Show commands: Magma
Group invariants
Abstract group: | $C_4^2:C_4$ |
| |
Order: | $64=2^{6}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $2$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $64$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $16$ |
| |
Generators: | $(1,26,5,21,4,28,8,24)(2,25,6,22,3,27,7,23)(9,17,14,31,11,19,15,30)(10,18,13,32,12,20,16,29)$, $(1,31,16,25)(2,32,15,26)(3,29,14,28)(4,30,13,27)(5,17,10,23)(6,18,9,24)(7,20,11,21)(8,19,12,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 6, $C_2^2$ $8$: $D_{4}$ x 3, $C_4\times C_2$ x 3, $Q_8$ $16$: $C_2^2:C_4$ x 3, $C_4^2$, $C_4:C_4$ x 3 $32$: 32T41 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_4\times C_2$, $D_4$ x 2, $C_2^2:C_4$ x 2
Degree 16: $C_2^2 : C_4$, 16T74 x 2, 16T123
Low degree siblings
16T74 x 4, 16T123, 32T64, 32T131Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)(17,19)(18,20)(21,24)(22,23)(25,27)(26,28)(29,32)(30,31)$ |
2B | $2^{16}$ | $2$ | $2$ | $16$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5,12)( 6,11)( 7, 9)( 8,10)(17,23)(18,24)(19,22)(20,21)(25,31)(26,32)(27,30)(28,29)$ |
2C | $2^{16}$ | $2$ | $2$ | $16$ | $( 1,16)( 2,15)( 3,14)( 4,13)( 5,10)( 6, 9)( 7,11)( 8,12)(17,23)(18,24)(19,22)(20,21)(25,31)(26,32)(27,30)(28,29)$ |
2D | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)$ |
4A1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,12, 4,10)( 2,11, 3, 9)( 5,16, 8,13)( 6,15, 7,14)(17,25,19,27)(18,26,20,28)(21,29,24,32)(22,30,23,31)$ |
4A-1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,10, 4,12)( 2, 9, 3,11)( 5,13, 8,16)( 6,14, 7,15)(17,27,19,25)(18,28,20,26)(21,32,24,29)(22,31,23,30)$ |
4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 8, 4, 5)( 2, 7, 3, 6)( 9,15,11,14)(10,16,12,13)(17,31,19,30)(18,32,20,29)(21,28,24,26)(22,27,23,25)$ |
4C | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,10, 4,12)( 2, 9, 3,11)( 5,13, 8,16)( 6,14, 7,15)(17,25,19,27)(18,26,20,28)(21,29,24,32)(22,30,23,31)$ |
4D | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 5, 4, 8)( 2, 6, 3, 7)( 9,14,11,15)(10,13,12,16)(17,31,19,30)(18,32,20,29)(21,28,24,26)(22,27,23,25)$ |
4E1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,31,16,25)( 2,32,15,26)( 3,29,14,28)( 4,30,13,27)( 5,17,10,23)( 6,18, 9,24)( 7,20,11,21)( 8,19,12,22)$ |
4E-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,25,16,31)( 2,26,15,32)( 3,28,14,29)( 4,27,13,30)( 5,23,10,17)( 6,24, 9,18)( 7,21,11,20)( 8,22,12,19)$ |
4F1 | $4^{4},2^{8}$ | $4$ | $4$ | $20$ | $( 1,15, 4,14)( 2,16, 3,13)( 5,11, 8, 9)( 6,12, 7,10)(17,29)(18,30)(19,32)(20,31)(21,27)(22,28)(23,26)(24,25)$ |
4F-1 | $4^{4},2^{8}$ | $4$ | $4$ | $20$ | $( 1,14, 4,15)( 2,13, 3,16)( 5, 9, 8,11)( 6,10, 7,12)(17,29)(18,30)(19,32)(20,31)(21,27)(22,28)(23,26)(24,25)$ |
4G1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,30,13,25)( 2,29,14,26)( 3,32,15,28)( 4,31,16,27)( 5,19,12,23)( 6,20,11,24)( 7,18, 9,21)( 8,17,10,22)$ |
4G-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,27,13,31)( 2,28,14,32)( 3,26,15,29)( 4,25,16,30)( 5,22,12,17)( 6,21,11,18)( 7,24, 9,20)( 8,23,10,19)$ |
4H1 | $4^{4},2^{8}$ | $4$ | $4$ | $20$ | $( 1, 2)( 3, 4)( 5, 7)( 6, 8)( 9,10)(11,12)(13,15)(14,16)(17,28,19,26)(18,27,20,25)(21,30,24,31)(22,29,23,32)$ |
4H-1 | $4^{4},2^{8}$ | $4$ | $4$ | $20$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(15,16)(17,28,19,26)(18,27,20,25)(21,30,24,31)(22,29,23,32)$ |
8A1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,26, 5,21, 4,28, 8,24)( 2,25, 6,22, 3,27, 7,23)( 9,17,14,31,11,19,15,30)(10,18,13,32,12,20,16,29)$ |
8A-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,29, 5,18, 4,32, 8,20)( 2,30, 6,17, 3,31, 7,19)( 9,22,14,27,11,23,15,25)(10,21,13,28,12,24,16,26)$ |
8B1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,32, 8,18, 4,29, 5,20)( 2,31, 7,17, 3,30, 6,19)( 9,23,15,27,11,22,14,25)(10,24,16,28,12,21,13,26)$ |
8B-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,28, 8,21, 4,26, 5,24)( 2,27, 7,22, 3,25, 6,23)( 9,19,15,31,11,17,14,30)(10,20,16,32,12,18,13,29)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 2C | 2D | 4A1 | 4A-1 | 4B | 4C | 4D | 4E1 | 4E-1 | 4F1 | 4F-1 | 4G1 | 4G-1 | 4H1 | 4H-1 | 8A1 | 8A-1 | 8B1 | 8B-1 | ||
Size | 1 | 1 | 2 | 2 | 2 | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 2C | 2C | 2D | 2D | 2C | 2C | 2D | 2D | 4D | 4D | 4D | 4D | |
Type | |||||||||||||||||||||||
64.18.1a | R | ||||||||||||||||||||||
64.18.1b | R | ||||||||||||||||||||||
64.18.1c | R | ||||||||||||||||||||||
64.18.1d | R | ||||||||||||||||||||||
64.18.1e1 | C | ||||||||||||||||||||||
64.18.1e2 | C | ||||||||||||||||||||||
64.18.1f1 | C | ||||||||||||||||||||||
64.18.1f2 | C | ||||||||||||||||||||||
64.18.1g1 | C | ||||||||||||||||||||||
64.18.1g2 | C | ||||||||||||||||||||||
64.18.1h1 | C | ||||||||||||||||||||||
64.18.1h2 | C | ||||||||||||||||||||||
64.18.1i1 | C | ||||||||||||||||||||||
64.18.1i2 | C | ||||||||||||||||||||||
64.18.1j1 | C | ||||||||||||||||||||||
64.18.1j2 | C | ||||||||||||||||||||||
64.18.2a | R | ||||||||||||||||||||||
64.18.2b | R | ||||||||||||||||||||||
64.18.2c | R | ||||||||||||||||||||||
64.18.2d | S | ||||||||||||||||||||||
64.18.4a1 | C | ||||||||||||||||||||||
64.18.4a2 | C |
Regular extensions
Data not computed