Show commands: Magma
Group invariants
Abstract group: | $C_2^5:C_4$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $633$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,4)(2,3)(5,6)(7,8)(9,25)(10,26)(11,28)(12,27)(13,14)(15,16)(17,20)(18,19)(21,22)(23,24)(29,30)(31,32)$, $(1,17)(2,18)(3,19)(4,20)(5,8)(6,7)(9,26)(10,25)(11,27)(12,28)(13,15)(14,16)(21,24)(22,23)(29,31)(30,32)$, $(1,13,27,23)(2,14,28,24)(3,15,26,22)(4,16,25,21)(5,18,29,12)(6,17,30,11)(7,19,32,9)(8,20,31,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $32$: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ $64$: $((C_8 : C_2):C_2):C_2$ x 2, 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_4\times C_2$, $D_4$ x 2, $C_2^2:C_4$ x 2, $((C_8 : C_2):C_2):C_2$ x 4
Degree 16: $C_2^2 : C_4$, 16T170 x 2, 16T273 x 4
Low degree siblings
16T227 x 4, 16T259 x 8, 16T261 x 4, 16T273 x 4, 16T283 x 4, 32T506, 32T507 x 2, 32T508 x 4, 32T595 x 4, 32T596 x 8, 32T597 x 2, 32T598 x 4, 32T599 x 4, 32T601, 32T602 x 2, 32T657, 32T1130 x 2, 32T1796Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,17)( 2,18)( 3,19)( 4,20)( 5,24)( 6,23)( 7,22)( 8,21)( 9,26)(10,25)(11,27)(12,28)(13,30)(14,29)(15,32)(16,31)$ |
2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,24)(22,23)(25,28)(26,27)(29,31)(30,32)$ |
2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,19)( 2,20)( 3,17)( 4,18)( 5,21)( 6,22)( 7,23)( 8,24)( 9,27)(10,28)(11,26)(12,25)(13,32)(14,31)(15,30)(16,29)$ |
2D | $2^{16}$ | $2$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5,24)( 6,23)( 7,22)( 8,21)( 9,11)(10,12)(13,30)(14,29)(15,32)(16,31)(17,19)(18,20)(25,28)(26,27)$ |
2E | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 1,19)( 2,20)( 3,17)( 4,18)( 9,27)(10,28)(11,26)(12,25)$ |
2F | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,18)( 2,17)( 3,20)( 4,19)( 5, 6)( 7, 8)( 9,12)(10,11)(13,14)(15,16)(21,22)(23,24)(25,27)(26,28)(29,30)(31,32)$ |
2G | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5,23)( 6,24)( 7,21)( 8,22)( 9,28)(10,27)(11,25)(12,26)(13,29)(14,30)(15,31)(16,32)(17,18)(19,20)$ |
2H | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,17)( 2,18)( 3,19)( 4,20)( 5,24)( 6,23)( 7,22)( 8,21)( 9,11)(10,12)(13,15)(14,16)(25,28)(26,27)(29,31)(30,32)$ |
2I | $2^{8},1^{16}$ | $4$ | $2$ | $8$ | $( 9,27)(10,28)(11,26)(12,25)(13,32)(14,31)(15,30)(16,29)$ |
2J | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,20)( 2,19)( 3,18)( 4,17)( 5,23)( 6,24)( 7,21)( 8,22)( 9,28)(10,27)(11,25)(12,26)(13,16)(14,15)(29,32)(30,31)$ |
2K | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 6)( 7, 8)( 9,12)(10,11)(13,31)(14,32)(15,29)(16,30)(17,20)(18,19)(21,22)(23,24)(25,27)(26,28)$ |
2L | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,11)( 2,12)( 3, 9)( 4,10)( 5,14)( 6,13)( 7,15)( 8,16)(17,27)(18,28)(19,26)(20,25)(21,31)(22,32)(23,30)(24,29)$ |
2M | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,27)( 2,28)( 3,26)( 4,25)( 5,29)( 6,30)( 7,32)( 8,31)( 9,19)(10,20)(11,17)(12,18)(13,23)(14,24)(15,22)(16,21)$ |
4A | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,27,19, 9)( 2,28,20,10)( 3,26,17,11)( 4,25,18,12)( 5,29,21,16)( 6,30,22,15)( 7,32,23,13)( 8,31,24,14)$ |
4B | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,11,19,26)( 2,12,20,25)( 3, 9,17,27)( 4,10,18,28)( 5,14,21,31)( 6,13,22,32)( 7,15,23,30)( 8,16,24,29)$ |
4C | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1,12,19,25)( 2,11,20,26)( 3,10,17,28)( 4, 9,18,27)( 5,30)( 6,29)( 7,31)( 8,32)(13,24)(14,23)(15,21)(16,22)$ |
4D | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1,28,19,10)( 2,27,20, 9)( 3,25,17,12)( 4,26,18,11)( 5,13)( 6,14)( 7,16)( 8,15)(21,32)(22,31)(23,29)(24,30)$ |
4E1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,13,27,23)( 2,14,28,24)( 3,15,26,22)( 4,16,25,21)( 5,18,29,12)( 6,17,30,11)( 7,19,32, 9)( 8,20,31,10)$ |
4E-1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,23,27,13)( 2,24,28,14)( 3,22,26,15)( 4,21,25,16)( 5,12,29,18)( 6,11,30,17)( 7, 9,32,19)( 8,10,31,20)$ |
4F1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,30,27, 6)( 2,29,28, 5)( 3,32,26, 7)( 4,31,25, 8)( 9,22,19,15)(10,21,20,16)(11,23,17,13)(12,24,18,14)$ |
4F-1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1, 6,27,30)( 2, 5,28,29)( 3, 7,26,32)( 4, 8,25,31)( 9,15,19,22)(10,16,20,21)(11,13,17,23)(12,14,18,24)$ |
8A1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,29,11, 8,19,16,26,24)( 2,30,12, 7,20,15,25,23)( 3,31, 9, 5,17,14,27,21)( 4,32,10, 6,18,13,28,22)$ |
8A-1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1, 5,11,31,19,21,26,14)( 2, 6,12,32,20,22,25,13)( 3, 8, 9,29,17,24,27,16)( 4, 7,10,30,18,23,28,15)$ |
8B1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,14,11,21,19,31,26, 5)( 2,13,12,22,20,32,25, 6)( 3,16, 9,24,17,29,27, 8)( 4,15,10,23,18,30,28, 7)$ |
8B-1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,24,11,16,19, 8,26,29)( 2,23,12,15,20, 7,25,30)( 3,21, 9,14,17, 5,27,31)( 4,22,10,13,18, 6,28,32)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 4F1 | 4F-1 | 8A1 | 8A-1 | 8B1 | 8B-1 | ||
Size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2C | 2C | 2E | 2E | 2M | 2M | 2M | 2M | 4B | 4B | 4B | 4B | |
Type | |||||||||||||||||||||||||||
128.850.1a | R | ||||||||||||||||||||||||||
128.850.1b | R | ||||||||||||||||||||||||||
128.850.1c | R | ||||||||||||||||||||||||||
128.850.1d | R | ||||||||||||||||||||||||||
128.850.1e | R | ||||||||||||||||||||||||||
128.850.1f | R | ||||||||||||||||||||||||||
128.850.1g | R | ||||||||||||||||||||||||||
128.850.1h | R | ||||||||||||||||||||||||||
128.850.1i1 | C | ||||||||||||||||||||||||||
128.850.1i2 | C | ||||||||||||||||||||||||||
128.850.1j1 | C | ||||||||||||||||||||||||||
128.850.1j2 | C | ||||||||||||||||||||||||||
128.850.1k1 | C | ||||||||||||||||||||||||||
128.850.1k2 | C | ||||||||||||||||||||||||||
128.850.1l1 | C | ||||||||||||||||||||||||||
128.850.1l2 | C | ||||||||||||||||||||||||||
128.850.2a | R | ||||||||||||||||||||||||||
128.850.2b | R | ||||||||||||||||||||||||||
128.850.2c | R | ||||||||||||||||||||||||||
128.850.2d | R | ||||||||||||||||||||||||||
128.850.4a | R | ||||||||||||||||||||||||||
128.850.4b | R | ||||||||||||||||||||||||||
128.850.4c | R | ||||||||||||||||||||||||||
128.850.4d | R | ||||||||||||||||||||||||||
128.850.4e | R | ||||||||||||||||||||||||||
128.850.4f | R |
Regular extensions
Data not computed