Show commands: Magma
Group invariants
Abstract group: | $C_2^5:C_4$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $599$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,19)(2,20)(3,17)(4,18)(13,16)(14,15)(29,31)(30,32)$, $(1,20)(2,19)(3,18)(4,17)(5,22)(6,21)(7,24)(8,23)(9,26)(10,25)(11,28)(12,27)(13,14)(15,16)(29,30)(31,32)$, $(1,23,11,29,18,6,27,14)(2,24,12,30,17,5,28,13)(3,21,10,32,20,8,26,16)(4,22,9,31,19,7,25,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $32$: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ $64$: $((C_8 : C_2):C_2):C_2$ x 2, 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 8: $C_4\times C_2$, $C_2^3: C_4$ x 2, $((C_8 : C_2):C_2):C_2$ x 2
Low degree siblings
16T227 x 4, 16T259 x 8, 16T261 x 4, 16T273 x 4, 16T283 x 4, 32T506, 32T507 x 2, 32T508 x 4, 32T595 x 4, 32T596 x 8, 32T597 x 2, 32T598 x 4, 32T599 x 3, 32T601, 32T602 x 2, 32T633, 32T657, 32T1130 x 2, 32T1796Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,20)( 2,19)( 3,18)( 4,17)( 5,22)( 6,21)( 7,24)( 8,23)( 9,28)(10,27)(11,26)(12,25)(13,31)(14,32)(15,30)(16,29)$ |
2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,12)(10,11)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,28)(26,27)(29,32)(30,31)$ |
2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,18)( 2,17)( 3,20)( 4,19)( 5,24)( 6,23)( 7,22)( 8,21)( 9,25)(10,26)(11,27)(12,28)(13,30)(14,29)(15,31)(16,32)$ |
2D | $2^{16}$ | $2$ | $2$ | $16$ | $( 1,17)( 2,18)( 3,19)( 4,20)( 5, 6)( 7, 8)( 9,26)(10,25)(11,28)(12,27)(13,14)(15,16)(21,22)(23,24)(29,30)(31,32)$ |
2E | $2^{16}$ | $2$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5,21)( 6,22)( 7,23)( 8,24)( 9,11)(10,12)(13,32)(14,31)(15,29)(16,30)(17,20)(18,19)(25,27)(26,28)$ |
2F | $2^{8},1^{16}$ | $4$ | $2$ | $8$ | $( 1, 4)( 2, 3)( 5,21)( 6,22)( 7,23)( 8,24)(17,20)(18,19)$ |
2G | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,17)( 2,18)( 3,19)( 4,20)( 5, 6)( 7, 8)( 9,28)(10,27)(11,26)(12,25)(13,31)(14,32)(15,30)(16,29)(21,22)(23,24)$ |
2H | $2^{12},1^{8}$ | $4$ | $2$ | $12$ | $( 1,18)( 2,17)( 3,20)( 4,19)( 5,21)( 6,22)( 7,23)( 8,24)(13,16)(14,15)(29,31)(30,32)$ |
2I | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,28)(10,27)(11,26)(12,25)(13,29)(14,30)(15,32)(16,31)(17,19)(18,20)(21,22)(23,24)$ |
2J | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,18)( 2,17)( 3,20)( 4,19)( 5,21)( 6,22)( 7,23)( 8,24)( 9,11)(10,12)(13,30)(14,29)(15,31)(16,32)(25,27)(26,28)$ |
2K | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 6)( 7, 8)( 9,26)(10,25)(11,28)(12,27)(13,15)(14,16)(17,19)(18,20)(21,22)(23,24)(29,32)(30,31)$ |
2L | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,28)( 2,27)( 3,25)( 4,26)( 5,15)( 6,16)( 7,13)( 8,14)( 9,20)(10,19)(11,17)(12,18)(21,29)(22,30)(23,32)(24,31)$ |
2M | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 9)( 2,10)( 3,12)( 4,11)( 5,30)( 6,29)( 7,31)( 8,32)(13,24)(14,23)(15,22)(16,21)(17,26)(18,25)(19,27)(20,28)$ |
4A | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,12,18,28)( 2,11,17,27)( 3, 9,20,25)( 4,10,19,26)( 5,29,24,14)( 6,30,23,13)( 7,32,22,16)( 8,31,21,15)$ |
4B | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,25,18, 9)( 2,26,17,10)( 3,28,20,12)( 4,27,19,11)( 5,16,24,32)( 6,15,23,31)( 7,14,22,29)( 8,13,21,30)$ |
4C | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,11, 4, 9)( 2,12, 3,10)( 5,16,21,30)( 6,15,22,29)( 7,14,23,31)( 8,13,24,32)(17,28,20,26)(18,27,19,25)$ |
4D | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,26, 4,28)( 2,25, 3,27)( 5,29,21,15)( 6,30,22,16)( 7,32,23,13)( 8,31,24,14)( 9,20,11,17)(10,19,12,18)$ |
4E1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,23, 9,14)( 2,24,10,13)( 3,21,12,16)( 4,22,11,15)( 5,26,30,17)( 6,25,29,18)( 7,27,31,19)( 8,28,32,20)$ |
4E-1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,14, 9,23)( 2,13,10,24)( 3,16,12,21)( 4,15,11,22)( 5,17,30,26)( 6,18,29,25)( 7,19,31,27)( 8,20,32,28)$ |
4F1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1, 8, 9,32)( 2, 7,10,31)( 3, 6,12,29)( 4, 5,11,30)(13,19,24,27)(14,20,23,28)(15,17,22,26)(16,18,21,25)$ |
4F-1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,32, 9, 8)( 2,31,10, 7)( 3,29,12, 6)( 4,30,11, 5)(13,27,24,19)(14,28,23,20)(15,26,22,17)(16,25,21,18)$ |
8A1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,22,25,29,18, 7, 9,14)( 2,21,26,30,17, 8,10,13)( 3,24,28,32,20, 5,12,16)( 4,23,27,31,19, 6,11,15)$ |
8A-1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,15,11,22,18,31,27, 7)( 2,16,12,21,17,32,28, 8)( 3,13,10,24,20,30,26, 5)( 4,14, 9,23,19,29,25, 6)$ |
8B1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1, 5,25,16,18,24, 9,32)( 2, 6,26,15,17,23,10,31)( 3, 7,28,14,20,22,12,29)( 4, 8,27,13,19,21,11,30)$ |
8B-1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,30,11, 5,18,13,27,24)( 2,29,12, 6,17,14,28,23)( 3,31,10, 7,20,15,26,22)( 4,32, 9, 8,19,16,25,21)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 4F1 | 4F-1 | 8A1 | 8A-1 | 8B1 | 8B-1 | ||
Size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2C | 2C | 2E | 2E | 2M | 2M | 2M | 2M | 4B | 4B | 4B | 4B | |
Type | |||||||||||||||||||||||||||
128.850.1a | R | ||||||||||||||||||||||||||
128.850.1b | R | ||||||||||||||||||||||||||
128.850.1c | R | ||||||||||||||||||||||||||
128.850.1d | R | ||||||||||||||||||||||||||
128.850.1e | R | ||||||||||||||||||||||||||
128.850.1f | R | ||||||||||||||||||||||||||
128.850.1g | R | ||||||||||||||||||||||||||
128.850.1h | R | ||||||||||||||||||||||||||
128.850.1i1 | C | ||||||||||||||||||||||||||
128.850.1i2 | C | ||||||||||||||||||||||||||
128.850.1j1 | C | ||||||||||||||||||||||||||
128.850.1j2 | C | ||||||||||||||||||||||||||
128.850.1k1 | C | ||||||||||||||||||||||||||
128.850.1k2 | C | ||||||||||||||||||||||||||
128.850.1l1 | C | ||||||||||||||||||||||||||
128.850.1l2 | C | ||||||||||||||||||||||||||
128.850.2a | R | ||||||||||||||||||||||||||
128.850.2b | R | ||||||||||||||||||||||||||
128.850.2c | R | ||||||||||||||||||||||||||
128.850.2d | R | ||||||||||||||||||||||||||
128.850.4a | R | ||||||||||||||||||||||||||
128.850.4b | R | ||||||||||||||||||||||||||
128.850.4c | R | ||||||||||||||||||||||||||
128.850.4d | R | ||||||||||||||||||||||||||
128.850.4e | R | ||||||||||||||||||||||||||
128.850.4f | R |
Regular extensions
Data not computed