Show commands: Magma
Group invariants
Abstract group: | $C_2^4.D_4$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $570$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,3)(2,4)(9,20,11,17)(10,19,12,18)(13,22,16,24)(14,21,15,23)(29,31)(30,32)$, $(1,24,2,23)(3,22,4,21)(5,20,6,19)(7,17,8,18)(9,28,12,25)(10,27,11,26)(13,31,15,30)(14,32,16,29)$, $(1,8,3,6)(2,7,4,5)(9,23,11,21)(10,24,12,22)(13,18,16,19)(14,17,15,20)(25,31,27,29)(26,32,28,30)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $32$: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ $64$: 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_4\times C_2$, $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4
Degree 16: $C_2 \times (C_2^2:C_4)$, 16T250 x 2
Low degree siblings
16T234 x 2, 16T250 x 2, 16T297 x 4, 16T310 x 2, 32T524 x 2, 32T525, 32T526 x 2, 32T569 x 2, 32T689 x 4, 32T690 x 4, 32T718 x 2, 32T719Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,16)(14,15)(17,20)(18,19)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)$ |
2B | $2^{16}$ | $2$ | $2$ | $16$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,13)(10,14)(11,16)(12,15)(17,22)(18,21)(19,23)(20,24)(25,32)(26,31)(27,30)(28,29)$ |
2C | $2^{16}$ | $2$ | $2$ | $16$ | $( 1, 7)( 2, 8)( 3, 5)( 4, 6)( 9,16)(10,15)(11,13)(12,14)(17,24)(18,23)(19,21)(20,22)(25,32)(26,31)(27,30)(28,29)$ |
2D | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 9,11)(10,12)(13,16)(14,15)(17,20)(18,19)(21,23)(22,24)$ |
2E | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,26)( 2,25)( 3,28)( 4,27)( 5,29)( 6,30)( 7,31)( 8,32)( 9,23)(10,24)(11,21)(12,22)(13,19)(14,20)(15,17)(16,18)$ |
2F | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 6)( 2, 5)( 3, 8)( 4, 7)( 9,15)(10,16)(11,14)(12,13)(17,21)(18,22)(19,24)(20,23)(25,31)(26,32)(27,29)(28,30)$ |
2G | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,31)( 2,32)( 3,29)( 4,30)( 5,28)( 6,27)( 7,26)( 8,25)( 9,19)(10,20)(11,18)(12,17)(13,23)(14,24)(15,22)(16,21)$ |
2H | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,15)(14,16)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(29,32)(30,31)$ |
2I | $2^{16}$ | $8$ | $2$ | $16$ | $( 1,29)( 2,30)( 3,31)( 4,32)( 5,28)( 6,27)( 7,26)( 8,25)( 9,12)(10,11)(13,14)(15,16)(17,18)(19,20)(21,24)(22,23)$ |
4A | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,32, 3,30)( 2,31, 4,29)( 5,27, 7,25)( 6,28, 8,26)( 9,20,11,17)(10,19,12,18)(13,24,16,22)(14,23,15,21)$ |
4B | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,25, 3,27)( 2,26, 4,28)( 5,30, 7,32)( 6,29, 8,31)( 9,24,11,22)(10,23,12,21)(13,20,16,17)(14,19,15,18)$ |
4C | $4^{4},2^{4},1^{8}$ | $8$ | $4$ | $16$ | $( 1, 3)( 2, 4)( 9,20,11,17)(10,19,12,18)(13,22,16,24)(14,21,15,23)(29,31)(30,32)$ |
4D | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1, 7, 3, 5)( 2, 8, 4, 6)( 9,22)(10,21)(11,24)(12,23)(13,20)(14,19)(15,18)(16,17)(25,30,27,32)(26,29,28,31)$ |
4E | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,26, 3,28)( 2,25, 4,27)( 5,31, 7,29)( 6,32, 8,30)( 9,14,11,15)(10,13,12,16)(17,23,20,21)(18,24,19,22)$ |
4F1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,16,31,21)( 2,15,32,22)( 3,13,29,23)( 4,14,30,24)( 5, 9,28,19)( 6,10,27,20)( 7,11,26,18)( 8,12,25,17)$ |
4F-1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,21,31,16)( 2,22,32,15)( 3,23,29,13)( 4,24,30,14)( 5,19,28, 9)( 6,20,27,10)( 7,18,26,11)( 8,17,25,12)$ |
4G1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,24, 2,23)( 3,22, 4,21)( 5,20, 6,19)( 7,17, 8,18)( 9,28,12,25)(10,27,11,26)(13,31,15,30)(14,32,16,29)$ |
4G-1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,15, 4,13)( 2,16, 3,14)( 5,12, 8, 9)( 6,11, 7,10)(17,25,18,26)(19,28,20,27)(21,29,22,30)(23,31,24,32)$ |
4H1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,11,31,18)( 2,12,32,17)( 3, 9,29,19)( 4,10,30,20)( 5,13,28,23)( 6,14,27,24)( 7,16,26,21)( 8,15,25,22)$ |
4H-1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,18,31,11)( 2,17,32,12)( 3,19,29, 9)( 4,20,30,10)( 5,23,28,13)( 6,24,27,14)( 7,21,26,16)( 8,22,25,15)$ |
4I1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,17, 4,19)( 2,18, 3,20)( 5,22, 8,23)( 6,21, 7,24)( 9,31,10,32)(11,29,12,30)(13,28,14,27)(15,25,16,26)$ |
4I-1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,10, 2, 9)( 3,12, 4,11)( 5,14, 6,13)( 7,15, 8,16)(17,30,19,31)(18,29,20,32)(21,26,24,27)(22,25,23,28)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 4A | 4B | 4C | 4D | 4E | 4F1 | 4F-1 | 4G1 | 4G-1 | 4H1 | 4H-1 | 4I1 | 4I-1 | ||
Size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 8 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2D | 2D | 2A | 2G | 2G | 2H | 2H | 2G | 2G | 2H | 2H | |
Type | ||||||||||||||||||||||||
128.859.1a | R | |||||||||||||||||||||||
128.859.1b | R | |||||||||||||||||||||||
128.859.1c | R | |||||||||||||||||||||||
128.859.1d | R | |||||||||||||||||||||||
128.859.1e | R | |||||||||||||||||||||||
128.859.1f | R | |||||||||||||||||||||||
128.859.1g | R | |||||||||||||||||||||||
128.859.1h | R | |||||||||||||||||||||||
128.859.1i1 | C | |||||||||||||||||||||||
128.859.1i2 | C | |||||||||||||||||||||||
128.859.1j1 | C | |||||||||||||||||||||||
128.859.1j2 | C | |||||||||||||||||||||||
128.859.1k1 | C | |||||||||||||||||||||||
128.859.1k2 | C | |||||||||||||||||||||||
128.859.1l1 | C | |||||||||||||||||||||||
128.859.1l2 | C | |||||||||||||||||||||||
128.859.2a | R | |||||||||||||||||||||||
128.859.2b | R | |||||||||||||||||||||||
128.859.2c | R | |||||||||||||||||||||||
128.859.2d | R | |||||||||||||||||||||||
128.859.4a | R | |||||||||||||||||||||||
128.859.4b | R | |||||||||||||||||||||||
128.859.8a | R |
Regular extensions
Data not computed