Properties

Label 32T5586
32T5586 1 3 1->3 13 1->13 17 1->17 32 1->32 2 4 2->4 14 2->14 18 2->18 31 2->31 15 3->15 19 3->19 30 3->30 16 4->16 20 4->20 29 4->29 5 7 5->7 11 5->11 5->20 5->29 6 8 6->8 12 6->12 6->19 6->30 9 7->9 7->18 7->31 10 8->10 8->17 8->32 9->11 22 9->22 27 9->27 10->12 21 10->21 28 10->28 24 11->24 25 11->25 23 12->23 26 12->26 13->15 13->21 13->28 14->16 14->22 14->27 15->23 15->26 16->24 16->25 17->11 17->23 17->25 17->31 18->12 18->24 18->26 18->32 19->9 19->21 19->27 19->29 20->10 20->22 20->28 20->30 21->5 21->27 21->29 22->6 22->28 22->30 23->7 23->25 23->31 24->8 24->26 24->32 25->1 25->31 26->2 26->32 27->3 27->29 28->4 28->30 29->13 30->14 31->15 32->16
Degree $32$
Order $256$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $C_2^5:D_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(32, 5586);
 

Group invariants

Abstract group:  $C_2^5:D_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $256=2^{8}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  $2$
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $32$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $5586$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $16$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,32)(2,31)(3,30)(4,29)(5,20)(6,19)(7,18)(8,17)(9,22)(10,21)(11,24)(12,23)(13,28)(14,27)(15,26)(16,25)$, $(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26)$, $(1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)$, $(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,23)(18,24)(19,21)(20,22)(25,31)(26,32)(27,29)(28,30)$, $(1,17,11,25)(2,18,12,26)(3,19,9,27)(4,20,10,28)(5,29,13,21)(6,30,14,22)(7,31,15,23)(8,32,16,24)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 31
$4$:  $C_2^2$ x 155
$8$:  $D_{4}$ x 56, $C_2^3$ x 155
$16$:  $D_4\times C_2$ x 196, $C_2^4$ x 31
$32$:  $C_2^2 \wr C_2$ x 112, $C_2^2 \times D_4$ x 98, 32T39
$64$:  16T105 x 84, 32T273 x 7
$128$:  16T325 x 8, 32T1369 x 7

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$, $D_{4}$ x 14

Degree 8: $D_4\times C_2$ x 7, $C_2^2 \wr C_2$ x 28

Degree 16: 16T105 x 7, 16T325 x 8

Low degree siblings

32T5586 x 2047

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

88 x 88 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed