Show commands: Magma
Group invariants
Abstract group: | $C_2^5:D_4$ |
| |
Order: | $256=2^{8}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $2$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $5586$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $16$ |
| |
Generators: | $(1,32)(2,31)(3,30)(4,29)(5,20)(6,19)(7,18)(8,17)(9,22)(10,21)(11,24)(12,23)(13,28)(14,27)(15,26)(16,25)$, $(17,31)(18,32)(19,29)(20,30)(21,27)(22,28)(23,25)(24,26)$, $(1,13)(2,14)(3,15)(4,16)(5,11)(6,12)(7,9)(8,10)(17,25)(18,26)(19,27)(20,28)(21,29)(22,30)(23,31)(24,32)$, $(1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,23)(18,24)(19,21)(20,22)(25,31)(26,32)(27,29)(28,30)$, $(1,17,11,25)(2,18,12,26)(3,19,9,27)(4,20,10,28)(5,29,13,21)(6,30,14,22)(7,31,15,23)(8,32,16,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 31 $4$: $C_2^2$ x 155 $8$: $D_{4}$ x 56, $C_2^3$ x 155 $16$: $D_4\times C_2$ x 196, $C_2^4$ x 31 $32$: $C_2^2 \wr C_2$ x 112, $C_2^2 \times D_4$ x 98, 32T39 $64$: 16T105 x 84, 32T273 x 7 $128$: 16T325 x 8, 32T1369 x 7 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 14
Degree 8: $D_4\times C_2$ x 7, $C_2^2 \wr C_2$ x 28
Low degree siblings
32T5586 x 2047Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
88 x 88 character table
Regular extensions
Data not computed