Show commands: Magma
Group invariants
Abstract group: | $C_2^5:C_4$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $4$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $506$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,21,4,23)(2,22,3,24)(5,18,8,20)(6,17,7,19)(9,31,25,16)(10,32,26,15)(11,30,28,13)(12,29,27,14)$, $(1,6,4,7)(2,5,3,8)(9,31,25,16)(10,32,26,15)(11,30,28,13)(12,29,27,14)(17,23,19,21)(18,24,20,22)$, $(1,25)(2,26)(3,27)(4,28)(5,6)(7,8)(9,17)(10,18)(11,19)(12,20)(13,14)(15,16)(21,22)(23,24)(29,30)(31,32)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $32$: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ $64$: $((C_8 : C_2):C_2):C_2$ x 2, 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_4\times C_2$, $D_4$ x 2, $C_2^2:C_4$ x 2, $(((C_4 \times C_2): C_2):C_2):C_2$ x 4
Degree 16: $C_2^2 : C_4$, 16T171 x 2, 16T227 x 4
Low degree siblings
16T227 x 4, 16T259 x 8, 16T261 x 4, 16T273 x 4, 16T283 x 4, 32T507 x 2, 32T508 x 4, 32T595 x 4, 32T596 x 8, 32T597 x 2, 32T598 x 4, 32T599 x 4, 32T601, 32T602 x 2, 32T633, 32T657, 32T1130 x 2, 32T1796Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,17)( 2,18)( 3,20)( 4,19)( 5,24)( 6,23)( 7,21)( 8,22)( 9,25)(10,26)(11,28)(12,27)(13,30)(14,29)(15,32)(16,31)$ |
2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)(17,19)(18,20)(21,23)(22,24)(25,28)(26,27)(29,32)(30,31)$ |
2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1,19)( 2,20)( 3,18)( 4,17)( 5,22)( 6,21)( 7,23)( 8,24)( 9,28)(10,27)(11,25)(12,26)(13,31)(14,32)(15,29)(16,30)$ |
2D | $2^{16}$ | $2$ | $2$ | $16$ | $( 1,17)( 2,18)( 3,20)( 4,19)( 5, 8)( 6, 7)( 9,25)(10,26)(11,28)(12,27)(13,16)(14,15)(21,23)(22,24)(29,32)(30,31)$ |
2E | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 5,22)( 6,21)( 7,23)( 8,24)(13,31)(14,32)(15,29)(16,30)$ |
2F | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,18)( 2,17)( 3,19)( 4,20)( 5,14)( 6,13)( 7,16)( 8,15)( 9,26)(10,25)(11,27)(12,28)(21,31)(22,32)(23,30)(24,29)$ |
2G | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5,29)( 6,30)( 7,31)( 8,32)( 9,10)(11,12)(13,23)(14,24)(15,22)(16,21)(17,18)(19,20)(25,26)(27,28)$ |
2H | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,12)( 2,11)( 3, 9)( 4,10)( 5,30)( 6,29)( 7,32)( 8,31)(13,24)(14,23)(15,21)(16,22)(17,27)(18,28)(19,26)(20,25)$ |
2I | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,27)( 2,28)( 3,25)( 4,26)( 5,13)( 6,14)( 7,15)( 8,16)( 9,20)(10,19)(11,18)(12,17)(21,32)(22,31)(23,29)(24,30)$ |
2J | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,28)( 2,27)( 3,26)( 4,25)( 5, 7)( 6, 8)( 9,19)(10,20)(11,17)(12,18)(13,15)(14,16)(21,24)(22,23)(29,31)(30,32)$ |
2K | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,11)( 2,12)( 3,10)( 4, 9)( 5,21)( 6,22)( 7,24)( 8,23)(13,32)(14,31)(15,30)(16,29)(17,28)(18,27)(19,25)(20,26)$ |
2L | $2^{8},1^{16}$ | $4$ | $2$ | $8$ | $( 5,22)( 6,21)( 7,23)( 8,24)( 9,28)(10,27)(11,25)(12,26)$ |
2M | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,17)( 2,18)( 3,20)( 4,19)( 5, 8)( 6, 7)( 9,11)(10,12)(13,30)(14,29)(15,32)(16,31)(21,23)(22,24)(25,28)(26,27)$ |
4A | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,26,19,12)( 2,25,20,11)( 3,28,18, 9)( 4,27,17,10)( 5,30,22,16)( 6,29,21,15)( 7,32,23,14)( 8,31,24,13)$ |
4B | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,10,19,27)( 2, 9,20,28)( 3,11,18,25)( 4,12,17,26)( 5,13,22,31)( 6,14,21,32)( 7,15,23,29)( 8,16,24,30)$ |
4C | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1, 2)( 3, 4)( 5,29,22,15)( 6,30,21,16)( 7,31,23,13)( 8,32,24,14)( 9,27)(10,28)(11,26)(12,25)(17,18)(19,20)$ |
4D | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1,18)( 2,17)( 3,19)( 4,20)( 5,14,22,32)( 6,13,21,31)( 7,16,23,30)( 8,15,24,29)( 9,12)(10,11)(25,27)(26,28)$ |
4E1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,14,17,29)( 2,13,18,30)( 3,16,20,31)( 4,15,19,32)( 5,25, 8,28)( 6,26, 7,27)( 9,22,11,24)(10,21,12,23)$ |
4E-1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,29,17,14)( 2,30,18,13)( 3,31,20,16)( 4,32,19,15)( 5,28, 8,25)( 6,27, 7,26)( 9,24,11,22)(10,23,12,21)$ |
4F1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,29,17,14)( 2,30,18,13)( 3,31,20,16)( 4,32,19,15)( 5, 9, 8,11)( 6,10, 7,12)(21,27,23,26)(22,28,24,25)$ |
4F-1 | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,14,17,29)( 2,13,18,30)( 3,16,20,31)( 4,15,19,32)( 5,11, 8, 9)( 6,12, 7,10)(21,26,23,27)(22,25,24,28)$ |
8A1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,30,10, 8,19,16,27,24)( 2,29, 9, 7,20,15,28,23)( 3,32,11, 6,18,14,25,21)( 4,31,12, 5,17,13,26,22)$ |
8A-1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,13,27,22,19,31,10, 5)( 2,14,28,21,20,32, 9, 6)( 3,15,25,23,18,29,11, 7)( 4,16,26,24,17,30,12, 8)$ |
8B1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,13,10,22,19,31,27, 5)( 2,14, 9,21,20,32,28, 6)( 3,15,11,23,18,29,25, 7)( 4,16,12,24,17,30,26, 8)$ |
8B-1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,30,27, 8,19,16,10,24)( 2,29,28, 7,20,15, 9,23)( 3,32,25, 6,18,14,11,21)( 4,31,26, 5,17,13,12,22)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 2J | 2K | 2L | 2M | 4A | 4B | 4C | 4D | 4E1 | 4E-1 | 4F1 | 4F-1 | 8A1 | 8A-1 | 8B1 | 8B-1 | ||
Size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2C | 2C | 2E | 2E | 2M | 2M | 2M | 2M | 4B | 4B | 4B | 4B | |
Type | |||||||||||||||||||||||||||
128.850.1a | R | ||||||||||||||||||||||||||
128.850.1b | R | ||||||||||||||||||||||||||
128.850.1c | R | ||||||||||||||||||||||||||
128.850.1d | R | ||||||||||||||||||||||||||
128.850.1e | R | ||||||||||||||||||||||||||
128.850.1f | R | ||||||||||||||||||||||||||
128.850.1g | R | ||||||||||||||||||||||||||
128.850.1h | R | ||||||||||||||||||||||||||
128.850.1i1 | C | ||||||||||||||||||||||||||
128.850.1i2 | C | ||||||||||||||||||||||||||
128.850.1j1 | C | ||||||||||||||||||||||||||
128.850.1j2 | C | ||||||||||||||||||||||||||
128.850.1k1 | C | ||||||||||||||||||||||||||
128.850.1k2 | C | ||||||||||||||||||||||||||
128.850.1l1 | C | ||||||||||||||||||||||||||
128.850.1l2 | C | ||||||||||||||||||||||||||
128.850.2a | R | ||||||||||||||||||||||||||
128.850.2b | R | ||||||||||||||||||||||||||
128.850.2c | R | ||||||||||||||||||||||||||
128.850.2d | R | ||||||||||||||||||||||||||
128.850.4a | R | ||||||||||||||||||||||||||
128.850.4b | R | ||||||||||||||||||||||||||
128.850.4c | R | ||||||||||||||||||||||||||
128.850.4d | R | ||||||||||||||||||||||||||
128.850.4e | R | ||||||||||||||||||||||||||
128.850.4f | R |
Regular extensions
Data not computed