Show commands: Magma
Group invariants
Abstract group: | $Q_{16}:C_2^2$ |
| |
Order: | $64=2^{6}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $369$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $16$ |
| |
Generators: | $(1,15,3,13)(2,16,4,14)(5,11,7,9)(6,12,8,10)(17,21,19,23)(18,22,20,24)(25,31,27,29)(26,32,28,30)$, $(1,16,3,14)(2,15,4,13)(5,12,7,10)(6,11,8,9)(17,22,19,24)(18,21,20,23)(25,32,27,30)(26,31,28,29)$, $(1,32,7,18,3,30,5,20)(2,31,8,17,4,29,6,19)(9,26,15,22,11,28,13,24)(10,25,16,21,12,27,14,23)$, $(1,19,7,31,3,17,5,29)(2,20,8,32,4,18,6,30)(9,23,15,25,11,21,13,27)(10,24,16,26,12,22,14,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $D_{4}$ x 4, $C_2^3$ x 15 $16$: $D_4\times C_2$ x 6, $C_2^4$ $32$: $C_2^2 \times D_4$, 16T32 x 2 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 4: $C_2^2$ x 7, $D_{4}$ x 4
Degree 8: $C_2^3$, $D_4$ x 2, $D_4\times C_2$ x 4
Degree 16: $D_4\times C_2$, 16T50 x 2
Low degree siblings
32T278 x 2, 32T369Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)$ |
2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)$ |
2D | $2^{16}$ | $2$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)$ |
2E | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
2F | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,24)( 2,23)( 3,22)( 4,21)( 5,26)( 6,25)( 7,28)( 8,27)( 9,18)(10,17)(11,20)(12,19)(13,30)(14,29)(15,32)(16,31)$ |
2G | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,21)( 2,22)( 3,23)( 4,24)( 5,27)( 6,28)( 7,25)( 8,26)( 9,19)(10,20)(11,17)(12,18)(13,31)(14,32)(15,29)(16,30)$ |
4A | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 6, 3, 8)( 2, 5, 4, 7)( 9,14,11,16)(10,13,12,15)(17,30,19,32)(18,29,20,31)(21,28,23,26)(22,27,24,25)$ |
4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 8, 3, 6)( 2, 7, 4, 5)( 9,16,11,14)(10,15,12,13)(17,30,19,32)(18,29,20,31)(21,28,23,26)(22,27,24,25)$ |
4C | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 7, 3, 5)( 2, 8, 4, 6)( 9,15,11,13)(10,16,12,14)(17,31,19,29)(18,32,20,30)(21,25,23,27)(22,26,24,28)$ |
4D | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 5, 3, 7)( 2, 6, 4, 8)( 9,13,11,15)(10,14,12,16)(17,31,19,29)(18,32,20,30)(21,25,23,27)(22,26,24,28)$ |
4E | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,13, 3,15)( 2,14, 4,16)( 5, 9, 7,11)( 6,10, 8,12)(17,21,19,23)(18,22,20,24)(25,31,27,29)(26,32,28,30)$ |
4F | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,14, 3,16)( 2,13, 4,15)( 5,10, 7,12)( 6, 9, 8,11)(17,24,19,22)(18,23,20,21)(25,30,27,32)(26,29,28,31)$ |
4G | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,16, 3,14)( 2,15, 4,13)( 5,12, 7,10)( 6,11, 8, 9)(17,24,19,22)(18,23,20,21)(25,30,27,32)(26,29,28,31)$ |
4H | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,23, 3,21)( 2,24, 4,22)( 5,25, 7,27)( 6,26, 8,28)( 9,17,11,19)(10,18,12,20)(13,29,15,31)(14,30,16,32)$ |
4I | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,15, 3,13)( 2,16, 4,14)( 5,11, 7, 9)( 6,12, 8,10)(17,21,19,23)(18,22,20,24)(25,31,27,29)(26,32,28,30)$ |
4J | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,22, 3,24)( 2,21, 4,23)( 5,28, 7,26)( 6,27, 8,25)( 9,20,11,18)(10,19,12,17)(13,32,15,30)(14,31,16,29)$ |
8A | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,32, 5,20, 3,30, 7,18)( 2,31, 6,19, 4,29, 8,17)( 9,26,13,24,11,28,15,22)(10,25,14,23,12,27,16,21)$ |
8B | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,31, 7,17, 3,29, 5,19)( 2,32, 8,18, 4,30, 6,20)( 9,25,15,21,11,27,13,23)(10,26,16,22,12,28,14,24)$ |
8C | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,29, 5,17, 3,31, 7,19)( 2,30, 6,18, 4,32, 8,20)( 9,27,13,21,11,25,15,23)(10,28,14,22,12,26,16,24)$ |
8D | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,30, 7,20, 3,32, 5,18)( 2,29, 8,19, 4,31, 6,17)( 9,28,15,24,11,26,13,22)(10,27,16,23,12,25,14,21)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 4J | 8A | 8B | 8C | 8D | ||
Size | 1 | 1 | 1 | 1 | 2 | 2 | 4 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2C | 2C | 2C | 2C | 2C | 2C | 2C | 2C | 2C | 2C | 4D | 4D | 4D | 4D | |
Type | |||||||||||||||||||||||
64.255.1a | R | ||||||||||||||||||||||
64.255.1b | R | ||||||||||||||||||||||
64.255.1c | R | ||||||||||||||||||||||
64.255.1d | R | ||||||||||||||||||||||
64.255.1e | R | ||||||||||||||||||||||
64.255.1f | R | ||||||||||||||||||||||
64.255.1g | R | ||||||||||||||||||||||
64.255.1h | R | ||||||||||||||||||||||
64.255.1i | R | ||||||||||||||||||||||
64.255.1j | R | ||||||||||||||||||||||
64.255.1k | R | ||||||||||||||||||||||
64.255.1l | R | ||||||||||||||||||||||
64.255.1m | R | ||||||||||||||||||||||
64.255.1n | R | ||||||||||||||||||||||
64.255.1o | R | ||||||||||||||||||||||
64.255.1p | R | ||||||||||||||||||||||
64.255.2a | R | ||||||||||||||||||||||
64.255.2b | R | ||||||||||||||||||||||
64.255.2c | R | ||||||||||||||||||||||
64.255.2d | R | ||||||||||||||||||||||
64.255.4a | S | ||||||||||||||||||||||
64.255.4b | S |
Regular extensions
Data not computed