Show commands: Magma
Group invariants
| Abstract group: | $C_2^3.C_2^5$ |
| |
| Order: | $256=2^{8}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $2$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $3449$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $8$ |
| |
| Generators: | $(1,5)(2,6)(3,7)(4,8)(9,16)(10,15)(11,13)(12,14)(17,30)(18,29)(19,32)(20,31)(21,26)(22,25)(23,28)(24,27)$, $(1,14)(2,13)(3,16)(4,15)(5,12)(6,11)(7,9)(8,10)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$, $(1,7,15,11)(2,8,16,12)(3,5,13,10)(4,6,14,9)(17,28,24,29)(18,27,23,30)(19,26,22,31)(20,25,21,32)$, $(1,5,16,9)(2,6,15,10)(3,7,14,12)(4,8,13,11)(17,27,23,29)(18,28,24,30)(19,25,21,31)(20,26,22,32)$, $(1,19,13,24)(2,20,14,23)(3,17,15,22)(4,18,16,21)(5,25,11,30)(6,26,12,29)(7,27,10,32)(8,28,9,31)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 31 $4$: $C_2^2$ x 155 $8$: $D_{4}$ x 8, $C_2^3$ x 155 $16$: $D_4\times C_2$ x 28, $C_2^4$ x 31 $32$: $Q_8:C_2^2$ x 12, $C_2^2 \times D_4$ x 14, 32T39 $64$: 16T69 x 6, 16T83 x 4, 32T273 $128$: 16T198 x 3, 16T206 x 3, 32T1020 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $Q_8:C_2^2$ x 6
Low degree siblings
32T3449 x 127Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
52 x 52 character table
Regular extensions
Data not computed