Properties

Label 32T339
32T339 1 5 1->5 16 1->16 2 6 2->6 15 2->15 3 4 3->4 7 3->7 13 3->13 8 4->8 14 4->14 5->13 17 5->17 6->14 18 6->18 7->15 19 7->19 8->16 20 8->20 9 24 9->24 27 9->27 29 9->29 10 23 10->23 28 10->28 30 10->30 11 21 11->21 25 11->25 32 11->32 12 22 12->22 26 12->26 31 12->31 13->26 13->27 14->25 14->28 15->26 15->27 16->25 16->28 17->18 17->21 17->32 18->22 18->31 19->23 19->30 20->24 20->29 21->1 21->29 22->2 22->30 23->3 23->32 24->4 24->31 25->8 26->7 27->6 28->5 29->11 30->12 31->10 32->9
Degree $32$
Order $64$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group yes
Group: $C_8:D_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(32, 339);
 

Group invariants

Abstract group:  $C_8:D_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $64=2^{6}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:  $3$
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $32$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $339$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $4$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(3,4)(5,13)(6,14)(7,15)(8,16)(9,27)(10,28)(11,25)(12,26)(17,18)(21,29)(22,30)(23,32)(24,31)$, $(1,5)(2,6)(3,7)(4,8)(9,29)(10,30)(11,32)(12,31)(13,26)(14,25)(15,27)(16,28)(17,21)(18,22)(19,23)(20,24)$, $(1,16,25,8,20,29,11,21)(2,15,26,7,19,30,12,22)(3,13,27,6,18,31,10,23)(4,14,28,5,17,32,9,24)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$8$:  $D_{4}$ x 6, $C_2^3$
$16$:  $D_4\times C_2$ x 3
$32$:  $Z_8 : Z_8^\times$ x 2, $C_4^2:C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 4: $C_2^2$, $D_{4}$ x 6

Degree 8: $D_4\times C_2$ x 3, $Z_8 : Z_8^\times$ x 4

Degree 16: 16T38 x 2, $C_4^2:C_2$

Low degree siblings

32T339, 32T360

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{32}$ $1$ $1$ $0$ $()$
2A $2^{16}$ $1$ $2$ $16$ $( 1,19)( 2,20)( 3,17)( 4,18)( 5,23)( 6,24)( 7,21)( 8,22)( 9,27)(10,28)(11,26)(12,25)(13,32)(14,31)(15,29)(16,30)$
2B $2^{16}$ $1$ $2$ $16$ $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$
2C $2^{16}$ $1$ $2$ $16$ $( 1,20)( 2,19)( 3,18)( 4,17)( 5,24)( 6,23)( 7,22)( 8,21)( 9,28)(10,27)(11,25)(12,26)(13,31)(14,32)(15,30)(16,29)$
2D $2^{14},1^{4}$ $8$ $2$ $14$ $( 1,12)( 2,11)( 3,10)( 4, 9)( 5,24)( 6,23)( 7,21)( 8,22)(15,16)(17,28)(18,27)(19,25)(20,26)(29,30)$
2E $2^{16}$ $8$ $2$ $16$ $( 1, 3)( 2, 4)( 5,30)( 6,29)( 7,32)( 8,31)( 9,26)(10,25)(11,27)(12,28)(13,21)(14,22)(15,24)(16,23)(17,19)(18,20)$
2F $2^{16}$ $8$ $2$ $16$ $( 1,24)( 2,23)( 3,22)( 4,21)( 5,20)( 6,19)( 7,18)( 8,17)( 9,16)(10,15)(11,14)(12,13)(25,32)(26,31)(27,30)(28,29)$
4A $4^{8}$ $2$ $4$ $24$ $( 1,11,20,25)( 2,12,19,26)( 3,10,18,27)( 4, 9,17,28)( 5,14,24,32)( 6,13,23,31)( 7,15,22,30)( 8,16,21,29)$
4B $4^{8}$ $2$ $4$ $24$ $( 1,12,20,26)( 2,11,19,25)( 3, 9,18,28)( 4,10,17,27)( 5,13,24,31)( 6,14,23,32)( 7,16,22,29)( 8,15,21,30)$
4C $4^{8}$ $4$ $4$ $24$ $( 1,28,19,10)( 2,27,20, 9)( 3,25,17,12)( 4,26,18,11)( 5,15,23,29)( 6,16,24,30)( 7,13,21,32)( 8,14,22,31)$
4D $4^{8}$ $4$ $4$ $24$ $( 1, 4, 2, 3)( 5,22, 6,21)( 7,23, 8,24)( 9,12,10,11)(13,29,14,30)(15,31,16,32)(17,19,18,20)(25,28,26,27)$
4E $4^{8}$ $8$ $4$ $24$ $( 1,29,20,16)( 2,30,19,15)( 3,32,18,14)( 4,31,17,13)( 5,10,24,27)( 6, 9,23,28)( 7,12,22,26)( 8,11,21,25)$
8A $8^{4}$ $4$ $8$ $28$ $( 1,22,11,30,20, 7,25,15)( 2,21,12,29,19, 8,26,16)( 3,24,10,32,18, 5,27,14)( 4,23, 9,31,17, 6,28,13)$
8B $8^{4}$ $4$ $8$ $28$ $( 1, 8,11,16,20,21,25,29)( 2, 7,12,15,19,22,26,30)( 3, 6,10,13,18,23,27,31)( 4, 5, 9,14,17,24,28,32)$
8C $8^{4}$ $4$ $8$ $28$ $( 1,13,12,24,20,31,26, 5)( 2,14,11,23,19,32,25, 6)( 3,15, 9,21,18,30,28, 8)( 4,16,10,22,17,29,27, 7)$
8D $8^{4}$ $4$ $8$ $28$ $( 1,23,26,14,20, 6,12,32)( 2,24,25,13,19, 5,11,31)( 3,22,28,16,18, 7, 9,29)( 4,21,27,15,17, 8,10,30)$

Malle's constant $a(G)$:     $1/14$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 2D 2E 2F 4A 4B 4C 4D 4E 8A 8B 8C 8D
Size 1 1 1 1 8 8 8 2 2 4 4 8 4 4 4 4
2 P 1A 1A 1A 1A 1A 1A 1A 2C 2C 2A 2B 2C 4A 4A 4B 4B
Type
64.177.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
64.177.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
64.177.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
64.177.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
64.177.1e R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
64.177.1f R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
64.177.1g R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
64.177.1h R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
64.177.2a R 2 2 2 2 0 0 0 2 2 0 0 0 0 2 2 0
64.177.2b R 2 2 2 2 0 0 0 2 2 0 0 0 0 2 2 0
64.177.2c R 2 2 2 2 0 0 0 2 2 0 0 0 2 0 0 2
64.177.2d R 2 2 2 2 0 0 0 2 2 0 0 0 2 0 0 2
64.177.2e R 2 2 2 2 0 0 0 2 2 2 2 0 0 0 0 0
64.177.2f R 2 2 2 2 0 0 0 2 2 2 2 0 0 0 0 0
64.177.4a R 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0
64.177.4b R 4 4 4 4 0 0 0 0 0 0 0 0 0 0 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed