Show commands: Magma
Group invariants
Abstract group: | $(C_4\times C_8).D_4$ |
| |
Order: | $256=2^{8}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $6$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $3215$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,30,8,28,11,22,15,19,3,32,5,25,9,23,14,18)(2,29,7,27,12,21,16,20,4,31,6,26,10,24,13,17)$, $(1,24,12,32)(2,23,11,31)(3,21,10,30)(4,22,9,29)(5,27,7,25)(6,28,8,26)(13,18,14,17)(15,20,16,19)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_4\times C_2$ $16$: $C_2^2:C_4$ $32$: $C_2^3 : C_4 $ $64$: $((C_8 : C_2):C_2):C_2$ $128$: 16T335 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$, $((C_8 : C_2):C_2):C_2$, $(((C_4 \times C_2): C_2):C_2):C_2$
Low degree siblings
16T658 x 2, 32T3214, 32T3216, 32T7128, 32T7142, 32T7145, 32T7297Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,31)(30,32)$ |
2B | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,31)(30,32)$ |
2C | $2^{12},1^{8}$ | $16$ | $2$ | $12$ | $( 1, 6)( 2, 5)( 3, 7)( 4, 8)( 9,13)(10,14)(11,16)(12,15)(21,24)(22,23)(29,31)(30,32)$ |
2D | $2^{16}$ | $16$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5,13)( 6,14)( 7,15)( 8,16)( 9,12)(10,11)(17,19)(18,20)(21,32)(22,31)(23,29)(24,30)(25,26)(27,28)$ |
4A | $4^{4},2^{8}$ | $4$ | $4$ | $20$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)(17,26,20,27)(18,25,19,28)(21,29,24,31)(22,30,23,32)$ |
4B | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5,15, 8,14)( 6,16, 7,13)(17,27,20,26)(18,28,19,25)(21,31,24,29)(22,32,23,30)$ |
4C | $4^{4},1^{16}$ | $4$ | $4$ | $12$ | $(17,26,20,27)(18,25,19,28)(21,29,24,31)(22,30,23,32)$ |
4D1 | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1,16)( 2,15)( 3,13)( 4,14)( 5,10)( 6, 9)( 7,11)( 8,12)(17,27,20,26)(18,28,19,25)(21,29,24,31)(22,30,23,32)$ |
4D-1 | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1,13)( 2,14)( 3,16)( 4,15)( 5,12)( 6,11)( 7, 9)( 8,10)(17,26,20,27)(18,25,19,28)(21,31,24,29)(22,32,23,30)$ |
4E | $4^{8}$ | $16$ | $4$ | $24$ | $( 1,16, 3,13)( 2,15, 4,14)( 5,12, 8,10)( 6,11, 7, 9)(17,23,20,22)(18,24,19,21)(25,29,28,31)(26,30,27,32)$ |
4F1 | $4^{8}$ | $32$ | $4$ | $24$ | $( 1,26, 2,25)( 3,27, 4,28)( 5,29,13,23)( 6,30,14,24)( 7,32,15,21)( 8,31,16,22)( 9,17,12,19)(10,18,11,20)$ |
4F-1 | $4^{8}$ | $32$ | $4$ | $24$ | $( 1,25, 2,26)( 3,28, 4,27)( 5,23,13,29)( 6,24,14,30)( 7,21,15,32)( 8,22,16,31)( 9,19,12,17)(10,20,11,18)$ |
8A1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,14, 9, 5, 3,15,11, 8)( 2,13,10, 6, 4,16,12, 7)(17,31,27,24,20,29,26,21)(18,32,28,23,19,30,25,22)$ |
8A-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1, 8,11,15, 3, 5, 9,14)( 2, 7,12,16, 4, 6,10,13)(17,21,26,29,20,24,27,31)(18,22,25,30,19,23,28,32)$ |
8B | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,15, 9, 8, 3,14,11, 5)( 2,16,10, 7, 4,13,12, 6)(17,31,27,24,20,29,26,21)(18,32,28,23,19,30,25,22)$ |
8C1 | $8^{2},2^{8}$ | $16$ | $8$ | $22$ | $( 1, 2)( 3, 4)( 5,16)( 6,15)( 7,14)( 8,13)( 9,12)(10,11)(17,29,26,24,20,31,27,21)(18,30,25,23,19,32,28,22)$ |
8C3 | $8^{2},2^{8}$ | $16$ | $8$ | $22$ | $( 1,14,11, 8, 3,15, 9, 5)( 2,13,12, 7, 4,16,10, 6)(17,25)(18,26)(19,27)(20,28)(21,22)(23,24)(29,32)(30,31)$ |
16A1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,26,14,21, 9,17, 5,31, 3,27,15,24,11,20, 8,29)( 2,25,13,22,10,18, 6,32, 4,28,16,23,12,19, 7,30)$ |
16A-1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,18,14,23, 9,25, 5,32, 3,19,15,22,11,28, 8,30)( 2,17,13,24,10,26, 6,31, 4,20,16,21,12,27, 7,29)$ |
16A3 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,24, 5,26,11,31,14,20, 3,21, 8,27, 9,29,15,17)( 2,23, 6,25,12,32,13,19, 4,22, 7,28,10,30,16,18)$ |
16A-3 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,17,15,29, 9,27, 8,21, 3,20,14,31,11,26, 5,24)( 2,18,16,30,10,28, 7,22, 4,19,13,32,12,25, 6,23)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 2C | 2D | 4A | 4B | 4C | 4D1 | 4D-1 | 4E | 4F1 | 4F-1 | 8A1 | 8A-1 | 8B | 8C1 | 8C3 | 16A1 | 16A-1 | 16A3 | 16A-3 | ||
Size | 1 | 1 | 2 | 16 | 16 | 4 | 4 | 4 | 8 | 8 | 16 | 32 | 32 | 4 | 4 | 8 | 16 | 16 | 16 | 16 | 16 | 16 | |
2 P | 1A | 1A | 1A | 1A | 1A | 2B | 2A | 2B | 2B | 2B | 2A | 2D | 2D | 4B | 4B | 4B | 4C | 4C | 8A1 | 8A-1 | 8A1 | 8A-1 | |
Type | |||||||||||||||||||||||
256.507.1a | R | ||||||||||||||||||||||
256.507.1b | R | ||||||||||||||||||||||
256.507.1c | R | ||||||||||||||||||||||
256.507.1d | R | ||||||||||||||||||||||
256.507.1e1 | C | ||||||||||||||||||||||
256.507.1e2 | C | ||||||||||||||||||||||
256.507.1f1 | C | ||||||||||||||||||||||
256.507.1f2 | C | ||||||||||||||||||||||
256.507.2a | R | ||||||||||||||||||||||
256.507.2b | R | ||||||||||||||||||||||
256.507.4a | R | ||||||||||||||||||||||
256.507.4b | R | ||||||||||||||||||||||
256.507.4c | R | ||||||||||||||||||||||
256.507.4d1 | C | ||||||||||||||||||||||
256.507.4d2 | C | ||||||||||||||||||||||
256.507.4e1 | R | ||||||||||||||||||||||
256.507.4e2 | R | ||||||||||||||||||||||
256.507.4f1 | C | ||||||||||||||||||||||
256.507.4f2 | C | ||||||||||||||||||||||
256.507.4f3 | C | ||||||||||||||||||||||
256.507.4f4 | C | ||||||||||||||||||||||
256.507.8a | R |
Regular extensions
Data not computed