Show commands: Magma
Group invariants
| Abstract group: | $C_8^2:C_4$ |
| |
| Order: | $256=2^{8}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $2853$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $16$ |
| |
| Generators: | $(1,12,2,11)(3,10,4,9)(5,13,6,14)(7,15,8,16)(17,28,20,26)(18,27,19,25)(21,31,24,29)(22,32,23,30)$, $(1,22,29,14,7,19,28,11,3,24,32,16,5,17,25,9)(2,21,30,13,8,20,27,12,4,23,31,15,6,18,26,10)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 6, $C_2^2$ $8$: $D_{4}$ x 3, $C_4\times C_2$ x 3, $Q_8$ $16$: $C_2^2:C_4$ x 3, $C_4^2$, $C_4:C_4$ x 3 $32$: $C_4\wr C_2$ x 2, 32T41 $64$: 16T74, 16T90, 16T121 $128$: 32T1094 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$, $C_4\wr C_2$ x 2
Low degree siblings
16T580 x 4, 32T2851 x 2, 32T2852 x 2, 32T2853 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,28)(26,27)(29,32)(30,31)$ |
| 2B | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)$ |
| 2C | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,20)(18,19)(21,24)(22,23)(25,27)(26,28)(29,31)(30,32)$ |
| 4A1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1, 5, 3, 7)( 2, 6, 4, 8)( 9,16,11,14)(10,15,12,13)(17,24,19,22)(18,23,20,21)(25,32,28,29)(26,31,27,30)$ |
| 4A-1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1, 7, 3, 5)( 2, 8, 4, 6)( 9,14,11,16)(10,13,12,15)(17,22,19,24)(18,21,20,23)(25,29,28,32)(26,30,27,31)$ |
| 4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 5, 3, 7)( 2, 6, 4, 8)( 9,14,11,16)(10,13,12,15)(17,22,19,24)(18,21,20,23)(25,32,28,29)(26,31,27,30)$ |
| 4C1 | $4^{4},1^{16}$ | $2$ | $4$ | $12$ | $( 9,16,11,14)(10,15,12,13)(17,24,19,22)(18,23,20,21)$ |
| 4C-1 | $4^{4},1^{16}$ | $2$ | $4$ | $12$ | $( 9,14,11,16)(10,13,12,15)(17,22,19,24)(18,21,20,23)$ |
| 4D1 | $4^{4},2^{8}$ | $2$ | $4$ | $20$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,14,11,16)(10,13,12,15)(17,22,19,24)(18,21,20,23)(25,28)(26,27)(29,32)(30,31)$ |
| 4D-1 | $4^{4},2^{8}$ | $2$ | $4$ | $20$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,16,11,14)(10,15,12,13)(17,24,19,22)(18,23,20,21)(25,28)(26,27)(29,32)(30,31)$ |
| 4E | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 6, 3, 8)( 2, 5, 4, 7)( 9,15,11,13)(10,16,12,14)(17,21,19,23)(18,22,20,24)(25,30,28,31)(26,29,27,32)$ |
| 4F | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,15,11,13)(10,16,12,14)(17,21,19,23)(18,22,20,24)(25,27)(26,28)(29,31)(30,32)$ |
| 4G1 | $4^{8}$ | $16$ | $4$ | $24$ | $( 1,12, 2,11)( 3,10, 4, 9)( 5,13, 6,14)( 7,15, 8,16)(17,28,20,26)(18,27,19,25)(21,31,24,29)(22,32,23,30)$ |
| 4G-1 | $4^{8}$ | $16$ | $4$ | $24$ | $( 1,11, 2,12)( 3, 9, 4,10)( 5,14, 6,13)( 7,16, 8,15)(17,26,20,28)(18,25,19,27)(21,29,24,31)(22,30,23,32)$ |
| 8A1 | $8^{2},1^{16}$ | $4$ | $8$ | $14$ | $( 9,21,16,18,11,23,14,20)(10,22,15,17,12,24,13,19)$ |
| 8A-1 | $8^{2},1^{16}$ | $4$ | $8$ | $14$ | $( 9,18,14,21,11,20,16,23)(10,17,13,22,12,19,15,24)$ |
| 8B1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,30, 5,26, 3,31, 7,27)( 2,29, 6,25, 4,32, 8,28)( 9,18,14,21,11,20,16,23)(10,17,13,22,12,19,15,24)$ |
| 8B-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,30, 5,26, 3,31, 7,27)( 2,29, 6,25, 4,32, 8,28)( 9,20,14,23,11,18,16,21)(10,19,13,24,12,17,15,22)$ |
| 8C1 | $8^{2},2^{8}$ | $4$ | $8$ | $22$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,23,16,20,11,21,14,18)(10,24,15,19,12,22,13,17)(25,28)(26,27)(29,32)(30,31)$ |
| 8C-1 | $8^{2},2^{8}$ | $4$ | $8$ | $22$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,20,14,23,11,18,16,21)(10,19,13,24,12,17,15,22)(25,28)(26,27)(29,32)(30,31)$ |
| 8D1 | $8^{2},4^{4}$ | $4$ | $8$ | $26$ | $( 1, 5, 3, 7)( 2, 6, 4, 8)( 9,20,14,23,11,18,16,21)(10,19,13,24,12,17,15,22)(25,32,28,29)(26,31,27,30)$ |
| 8D-1 | $8^{2},4^{4}$ | $4$ | $8$ | $26$ | $( 1,30, 5,26, 3,31, 7,27)( 2,29, 6,25, 4,32, 8,28)( 9,14,11,16)(10,13,12,15)(17,22,19,24)(18,21,20,23)$ |
| 8E1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,30, 5,26, 3,31, 7,27)( 2,29, 6,25, 4,32, 8,28)( 9,23,16,20,11,21,14,18)(10,24,15,19,12,22,13,17)$ |
| 8E-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,26, 7,30, 3,27, 5,31)( 2,25, 8,29, 4,28, 6,32)( 9,18,14,21,11,20,16,23)(10,17,13,22,12,19,15,24)$ |
| 8F1 | $8^{2},4^{4}$ | $4$ | $8$ | $26$ | $( 1, 5, 3, 7)( 2, 6, 4, 8)( 9,21,16,18,11,23,14,20)(10,22,15,17,12,24,13,19)(25,32,28,29)(26,31,27,30)$ |
| 8F-1 | $8^{2},4^{4}$ | $4$ | $8$ | $26$ | $( 1, 7, 3, 5)( 2, 8, 4, 6)( 9,18,14,21,11,20,16,23)(10,17,13,22,12,19,15,24)(25,29,28,32)(26,30,27,31)$ |
| 8G1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,29, 7,28, 3,32, 5,25)( 2,30, 8,27, 4,31, 6,26)( 9,22,14,19,11,24,16,17)(10,21,13,20,12,23,15,18)$ |
| 8G-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,25, 5,32, 3,28, 7,29)( 2,26, 6,31, 4,27, 8,30)( 9,17,16,24,11,19,14,22)(10,18,15,23,12,20,13,21)$ |
| 8H | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,29, 7,28, 3,32, 5,25)( 2,30, 8,27, 4,31, 6,26)( 9,17,16,24,11,19,14,22)(10,18,15,23,12,20,13,21)$ |
| 8I1 | $8^{2},2^{8}$ | $8$ | $8$ | $22$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,22,14,19,11,24,16,17)(10,21,13,20,12,23,15,18)(25,27)(26,28)(29,31)(30,32)$ |
| 8I-1 | $8^{2},2^{8}$ | $8$ | $8$ | $22$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,17,16,24,11,19,14,22)(10,18,15,23,12,20,13,21)(25,27)(26,28)(29,31)(30,32)$ |
| 8J1 | $8^{2},4^{4}$ | $8$ | $8$ | $26$ | $( 1, 6, 3, 8)( 2, 5, 4, 7)( 9,19,16,22,11,17,14,24)(10,20,15,21,12,18,13,23)(25,30,28,31)(26,29,27,32)$ |
| 8J-1 | $8^{2},4^{4}$ | $8$ | $8$ | $26$ | $( 1, 6, 3, 8)( 2, 5, 4, 7)( 9,22,14,19,11,24,16,17)(10,21,13,20,12,23,15,18)(25,30,28,31)(26,29,27,32)$ |
| 8K1 | $8^{4}$ | $16$ | $8$ | $28$ | $( 1,13, 6, 9, 3,15, 8,11)( 2,14, 5,10, 4,16, 7,12)(17,28,21,31,19,25,23,30)(18,27,22,32,20,26,24,29)$ |
| 8K-1 | $8^{4}$ | $16$ | $8$ | $28$ | $( 1,14, 6,10, 3,16, 8,12)( 2,13, 5, 9, 4,15, 7,11)(17,26,21,29,19,27,23,32)(18,25,22,30,20,28,24,31)$ |
| 16A1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,24,29,16, 7,17,28, 9, 3,22,32,14, 5,19,25,11)( 2,23,30,15, 8,18,27,10, 4,21,31,13, 6,20,26,12)$ |
| 16A-1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,20,28,13, 5,21,29,10, 3,18,25,15, 7,23,32,12)( 2,19,27,14, 6,22,30, 9, 4,17,26,16, 8,24,31,11)$ |
| 16B1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,19,25,14, 5,22,32, 9, 3,17,28,16, 7,24,29,11)( 2,20,26,13, 6,21,31,10, 4,18,27,15, 8,23,30,12)$ |
| 16B-1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,23,32,15, 7,18,25,10, 3,21,29,13, 5,20,28,12)( 2,24,31,16, 8,17,26, 9, 4,22,30,14, 6,19,27,11)$ |
Malle's constant $a(G)$: $1/8$
Character table
40 x 40 character table
Regular extensions
Data not computed