Show commands: Magma
Group invariants
| Abstract group: | $C_8^2:C_4$ |
| |
| Order: | $256=2^{8}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $2852$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $8$ |
| |
| Generators: | $(1,17,6,24,4,19,8,22)(2,18,5,23,3,20,7,21)(9,25,14,29,11,28,16,32)(10,26,13,30,12,27,15,31)$, $(1,11,31,24,7,15,25,18,4,9,30,22,5,13,28,20)(2,12,32,23,8,16,26,17,3,10,29,21,6,14,27,19)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 6, $C_2^2$ $8$: $D_{4}$ x 3, $C_4\times C_2$ x 3, $Q_8$ $16$: $C_2^2:C_4$ x 3, $C_4^2$, $C_4:C_4$ x 3 $32$: $C_4\wr C_2$ x 2, 32T41 $64$: 16T74, 16T90, 16T121 $128$: 32T1094 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_2^2:C_4$, $C_4\wr C_2$ x 2
Low degree siblings
16T580 x 4, 32T2851 x 2, 32T2852, 32T2853 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,28)(26,27)(29,32)(30,31)$ |
| 2B | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)$ |
| 2C | $2^{16}$ | $4$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,10)(11,12)(13,14)(15,16)(17,20)(18,19)(21,24)(22,23)(25,26)(27,28)(29,30)(31,32)$ |
| 4A1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,13,11,15)(10,14,12,16)(17,21,19,23)(18,22,20,24)(25,30,28,31)(26,29,27,32)$ |
| 4A-1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,15,11,13)(10,16,12,14)(17,23,19,21)(18,24,20,22)(25,31,28,30)(26,32,27,29)$ |
| 4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,15,11,13)(10,16,12,14)(17,23,19,21)(18,24,20,22)(25,30,28,31)(26,29,27,32)$ |
| 4C1 | $4^{4},2^{8}$ | $2$ | $4$ | $20$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,15,11,13)(10,16,12,14)(17,23,19,21)(18,24,20,22)(25,28)(26,27)(29,32)(30,31)$ |
| 4C-1 | $4^{4},2^{8}$ | $2$ | $4$ | $20$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,13,11,15)(10,14,12,16)(17,21,19,23)(18,22,20,24)(25,28)(26,27)(29,32)(30,31)$ |
| 4D1 | $4^{4},1^{16}$ | $2$ | $4$ | $12$ | $( 9,13,11,15)(10,14,12,16)(17,21,19,23)(18,22,20,24)$ |
| 4D-1 | $4^{4},1^{16}$ | $2$ | $4$ | $12$ | $( 9,15,11,13)(10,16,12,14)(17,23,19,21)(18,24,20,22)$ |
| 4E | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 6, 4, 8)( 2, 5, 3, 7)( 9,14,11,16)(10,13,12,15)(17,24,19,22)(18,23,20,21)(25,29,28,32)(26,30,27,31)$ |
| 4F | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,16,11,14)(10,15,12,13)(17,22,19,24)(18,21,20,23)(25,27)(26,28)(29,31)(30,32)$ |
| 4G1 | $4^{8}$ | $16$ | $4$ | $24$ | $( 1,21, 3,24)( 2,22, 4,23)( 5,17, 8,20)( 6,18, 7,19)( 9,28,10,27)(11,25,12,26)(13,31,14,32)(15,30,16,29)$ |
| 4G-1 | $4^{8}$ | $16$ | $4$ | $24$ | $( 1,24, 3,21)( 2,23, 4,22)( 5,20, 8,17)( 6,19, 7,18)( 9,27,10,28)(11,26,12,25)(13,32,14,31)(15,29,16,30)$ |
| 8A1 | $8^{2},4^{4}$ | $4$ | $8$ | $26$ | $( 1, 8, 4, 6)( 2, 7, 3, 5)( 9,22,15,18,11,24,13,20)(10,21,16,17,12,23,14,19)(25,29,28,32)(26,30,27,31)$ |
| 8A-1 | $8^{2},4^{4}$ | $4$ | $8$ | $26$ | $( 1, 6, 4, 8)( 2, 5, 3, 7)( 9,18,13,22,11,20,15,24)(10,17,14,21,12,19,16,23)(25,32,28,29)(26,31,27,30)$ |
| 8B1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,27, 7,32, 4,26, 5,29)( 2,28, 8,31, 3,25, 6,30)( 9,21,15,17,11,23,13,19)(10,22,16,18,12,24,14,20)$ |
| 8B-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,27, 7,32, 4,26, 5,29)( 2,28, 8,31, 3,25, 6,30)( 9,23,15,19,11,21,13,17)(10,24,16,20,12,22,14,18)$ |
| 8C1 | $8^{2},4^{4}$ | $4$ | $8$ | $26$ | $( 1, 6, 4, 8)( 2, 5, 3, 7)( 9,24,15,20,11,22,13,18)(10,23,16,19,12,21,14,17)(25,32,28,29)(26,31,27,30)$ |
| 8C-1 | $8^{2},4^{4}$ | $4$ | $8$ | $26$ | $( 1, 8, 4, 6)( 2, 7, 3, 5)( 9,20,13,24,11,18,15,22)(10,19,14,23,12,17,16,21)(25,29,28,32)(26,30,27,31)$ |
| 8D1 | $8^{2},2^{8}$ | $4$ | $8$ | $22$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,18,13,22,11,20,15,24)(10,17,14,21,12,19,16,23)(25,27)(26,28)(29,31)(30,32)$ |
| 8D-1 | $8^{2},2^{8}$ | $4$ | $8$ | $22$ | $( 1,30, 5,25, 4,31, 7,28)( 2,29, 6,26, 3,32, 8,27)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)$ |
| 8E1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,26, 7,29, 4,27, 5,32)( 2,25, 8,30, 3,28, 6,31)( 9,17,13,21,11,19,15,23)(10,18,14,22,12,20,16,24)$ |
| 8E-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,29, 5,26, 4,32, 7,27)( 2,30, 6,25, 3,31, 8,28)( 9,23,15,19,11,21,13,17)(10,24,16,20,12,22,14,18)$ |
| 8F1 | $8^{2},2^{8}$ | $4$ | $8$ | $22$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,24,15,20,11,22,13,18)(10,23,16,19,12,21,14,17)(25,26)(27,28)(29,30)(31,32)$ |
| 8F-1 | $8^{2},2^{8}$ | $4$ | $8$ | $22$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,20,13,24,11,18,15,22)(10,19,14,23,12,17,16,21)(25,26)(27,28)(29,30)(31,32)$ |
| 8G1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,28, 5,30, 4,25, 7,31)( 2,27, 6,29, 3,26, 8,32)( 9,20,15,22,11,18,13,24)(10,19,16,21,12,17,14,23)$ |
| 8G-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,31, 7,25, 4,30, 5,28)( 2,32, 8,26, 3,29, 6,27)( 9,24,13,18,11,22,15,20)(10,23,14,17,12,21,16,19)$ |
| 8H | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,25, 5,31, 4,28, 7,30)( 2,26, 6,32, 3,27, 8,29)( 9,22,13,20,11,24,15,18)(10,21,14,19,12,23,16,17)$ |
| 8I1 | $8^{2},4^{4}$ | $8$ | $8$ | $26$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,21,13,19,11,23,15,17)(10,22,14,20,12,24,16,18)(25,30,28,31)(26,29,27,32)$ |
| 8I-1 | $8^{2},4^{4}$ | $8$ | $8$ | $26$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,17,15,23,11,19,13,21)(10,18,16,24,12,20,14,22)(25,31,28,30)(26,32,27,29)$ |
| 8J1 | $8^{2},2^{4},1^{8}$ | $8$ | $8$ | $18$ | $( 9,17,15,23,11,19,13,21)(10,18,16,24,12,20,14,22)(25,28)(26,27)(29,32)(30,31)$ |
| 8J-1 | $8^{2},2^{4},1^{8}$ | $8$ | $8$ | $18$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,23,13,17,11,21,15,19)(10,24,14,18,12,22,16,20)$ |
| 8K1 | $8^{4}$ | $16$ | $8$ | $28$ | $( 1,17, 6,24, 4,19, 8,22)( 2,18, 5,23, 3,20, 7,21)( 9,25,14,29,11,28,16,32)(10,26,13,30,12,27,15,31)$ |
| 8K-1 | $8^{4}$ | $16$ | $8$ | $28$ | $( 1,20, 6,21, 4,18, 8,23)( 2,19, 5,22, 3,17, 7,24)( 9,26,14,30,11,27,16,31)(10,25,13,29,12,28,15,32)$ |
| 16A1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,16,28,21, 5,12,30,17, 4,14,25,23, 7,10,31,19)( 2,15,27,22, 6,11,29,18, 3,13,26,24, 8, 9,32,20)$ |
| 16A-1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1, 9,30,24, 7,13,28,18, 4,11,31,22, 5,15,25,20)( 2,10,29,23, 8,14,27,17, 3,12,32,21, 6,16,26,19)$ |
| 16B1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,12,31,21, 7,16,25,19, 4,10,30,23, 5,14,28,17)( 2,11,32,22, 8,15,26,20, 3, 9,29,24, 6,13,27,18)$ |
| 16B-1 | $16^{2}$ | $16$ | $16$ | $30$ | $( 1,13,25,24, 5, 9,31,20, 4,15,28,22, 7,11,30,18)( 2,14,26,23, 6,10,32,19, 3,16,27,21, 8,12,29,17)$ |
Malle's constant $a(G)$: $1/8$
Character table
40 x 40 character table
Regular extensions
Data not computed