Show commands: Magma
Group invariants
| Abstract group: | $C_4^2.(C_2\times C_4)$ |
| |
| Order: | $128=2^{7}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $4$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $2064$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $8$ |
| |
| Generators: | $(1,23,20,6,2,24,19,5)(3,22,18,8,4,21,17,7)(9,32,26,13,10,31,25,14)(11,29,28,15,12,30,27,16)$, $(1,27,2,28)(3,25,4,26)(5,14,6,13)(7,15,8,16)(9,18,10,17)(11,20,12,19)(21,29,22,30)(23,32,24,31)$, $(1,22,20,7,2,21,19,8)(3,24,18,6,4,23,17,5)(9,30,26,15,10,29,25,16)(11,32,28,14,12,31,27,13)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 4, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$ $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$ $32$: $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$ $64$: 16T76 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 4
Degree 8: $C_4\times C_2$, $D_4$ x 2, $C_2^2:C_4$ x 2
Degree 16: $C_2^2 : C_4$
Low degree siblings
32T1854, 32T1861, 32T1865 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
| 2B | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 9,10)(11,12)(13,14)(15,16)(25,26)(27,28)(29,30)(31,32)$ |
| 2C | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 5, 6)( 7, 8)( 9,10)(11,12)(21,22)(23,24)(25,26)(27,28)$ |
| 2D | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 5, 6)( 7, 8)(13,14)(15,16)(21,22)(23,24)(29,30)(31,32)$ |
| 2E | $2^{16}$ | $8$ | $2$ | $16$ | $( 1,28)( 2,27)( 3,26)( 4,25)( 5,14)( 6,13)( 7,15)( 8,16)( 9,18)(10,17)(11,20)(12,19)(21,29)(22,30)(23,32)(24,31)$ |
| 4A | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,17, 2,18)( 3,20, 4,19)( 5,21, 6,22)( 7,23, 8,24)( 9,27,10,28)(11,26,12,25)(13,29,14,30)(15,31,16,32)$ |
| 4B | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,17, 2,18)( 3,20, 4,19)( 5,21, 6,22)( 7,23, 8,24)( 9,28,10,27)(11,25,12,26)(13,30,14,29)(15,32,16,31)$ |
| 4C | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,20, 2,19)( 3,18, 4,17)( 5,23, 6,24)( 7,22, 8,21)( 9,25,10,26)(11,27,12,28)(13,32,14,31)(15,29,16,30)$ |
| 4D | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 4, 2, 3)( 5, 8, 6, 7)( 9,11,10,12)(13,15,14,16)(17,20,18,19)(21,23,22,24)(25,28,26,27)(29,32,30,31)$ |
| 4E | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,20, 2,19)( 3,18, 4,17)( 5,23, 6,24)( 7,22, 8,21)( 9,26,10,25)(11,28,12,27)(13,31,14,32)(15,30,16,29)$ |
| 4F | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 4, 2, 3)( 5, 7, 6, 8)( 9,12,10,11)(13,15,14,16)(17,20,18,19)(21,24,22,23)(25,27,26,28)(29,32,30,31)$ |
| 4G | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1,12)( 2,11)( 3,10)( 4, 9)( 5,31, 6,32)( 7,29, 8,30)(13,23,14,24)(15,21,16,22)(17,25)(18,26)(19,27)(20,28)$ |
| 4H | $4^{4},2^{8}$ | $8$ | $4$ | $20$ | $( 1,12, 2,11)( 3,10, 4, 9)( 5,31)( 6,32)( 7,29)( 8,30)(13,24)(14,23)(15,22)(16,21)(17,25,18,26)(19,27,20,28)$ |
| 4I | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,28, 2,27)( 3,26, 4,25)( 5,14, 6,13)( 7,15, 8,16)( 9,17,10,18)(11,19,12,20)(21,29,22,30)(23,32,24,31)$ |
| 8A1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,23,20, 6, 2,24,19, 5)( 3,22,18, 8, 4,21,17, 7)( 9,32,26,13,10,31,25,14)(11,29,28,15,12,30,27,16)$ |
| 8A-1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1, 6,19,23, 2, 5,20,24)( 3, 8,17,22, 4, 7,18,21)( 9,13,25,32,10,14,26,31)(11,15,27,29,12,16,28,30)$ |
| 8B1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,14, 4,16, 2,13, 3,15)( 5,12, 7,10, 6,11, 8, 9)(17,29,20,32,18,30,19,31)(21,25,24,27,22,26,23,28)$ |
| 8B-1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,32, 3,30, 2,31, 4,29)( 5,28, 7,26, 6,27, 8,25)( 9,23,11,21,10,24,12,22)(13,17,15,19,14,18,16,20)$ |
| 8C1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,23,20, 6, 2,24,19, 5)( 3,22,18, 8, 4,21,17, 7)( 9,31,26,14,10,32,25,13)(11,30,28,16,12,29,27,15)$ |
| 8C-1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1, 6,19,23, 2, 5,20,24)( 3, 8,17,22, 4, 7,18,21)( 9,14,25,31,10,13,26,32)(11,16,27,30,12,15,28,29)$ |
| 8D1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,14, 3,15, 2,13, 4,16)( 5,12, 8, 9, 6,11, 7,10)(17,29,19,31,18,30,20,32)(21,25,23,28,22,26,24,27)$ |
| 8D-1 | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,32, 4,29, 2,31, 3,30)( 5,28, 8,25, 6,27, 7,26)( 9,24,12,21,10,23,11,22)(13,18,16,19,14,17,15,20)$ |
Malle's constant $a(G)$: $1/8$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 4A | 4B | 4C | 4D | 4E | 4F | 4G | 4H | 4I | 8A1 | 8A-1 | 8B1 | 8B-1 | 8C1 | 8C-1 | 8D1 | 8D-1 | ||
| Size | 1 | 1 | 2 | 2 | 2 | 8 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 2A | 2D | 2D | 2A | 4E | 4E | 4F | 4F | 4E | 4E | 4F | 4F | |
| Type | ||||||||||||||||||||||||
| 128.865.1a | R | |||||||||||||||||||||||
| 128.865.1b | R | |||||||||||||||||||||||
| 128.865.1c | R | |||||||||||||||||||||||
| 128.865.1d | R | |||||||||||||||||||||||
| 128.865.1e | R | |||||||||||||||||||||||
| 128.865.1f | R | |||||||||||||||||||||||
| 128.865.1g | R | |||||||||||||||||||||||
| 128.865.1h | R | |||||||||||||||||||||||
| 128.865.1i1 | C | |||||||||||||||||||||||
| 128.865.1i2 | C | |||||||||||||||||||||||
| 128.865.1j1 | C | |||||||||||||||||||||||
| 128.865.1j2 | C | |||||||||||||||||||||||
| 128.865.1k1 | C | |||||||||||||||||||||||
| 128.865.1k2 | C | |||||||||||||||||||||||
| 128.865.1l1 | C | |||||||||||||||||||||||
| 128.865.1l2 | C | |||||||||||||||||||||||
| 128.865.2a | R | |||||||||||||||||||||||
| 128.865.2b | R | |||||||||||||||||||||||
| 128.865.2c | R | |||||||||||||||||||||||
| 128.865.2d | R | |||||||||||||||||||||||
| 128.865.4a | R | |||||||||||||||||||||||
| 128.865.4b | R | |||||||||||||||||||||||
| 128.865.8a | S |
Regular extensions
Data not computed