Show commands: Magma
Group invariants
| Abstract group: | $D_4.C_4^2$ |
| |
| Order: | $128=2^{7}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $1412$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $8$ |
| |
| Generators: | $(1,12,4,9)(2,11,3,10)(5,13,8,16)(6,14,7,15)(17,26,20,27)(18,25,19,28)(21,32,24,29)(22,31,23,30)$, $(1,30,14,25,3,32,16,27)(2,29,13,26,4,31,15,28)(5,17,12,22,7,19,10,24)(6,18,11,21,8,20,9,23)$, $(1,32)(2,31)(3,30)(4,29)(5,17)(6,18)(7,19)(8,20)(9,23)(10,24)(11,21)(12,22)(13,28)(14,27)(15,26)(16,25)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_4$ x 12, $C_2^2$ x 7 $8$: $D_{4}$ x 4, $C_4\times C_2$ x 18, $C_2^3$ $16$: $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $Q_8:C_2$ x 2, $C_4\times C_2^2$ x 3, $C_4^2$ x 4 $32$: $C_4^2:C_2$, $C_4 \times D_4$ x 4, $C_2 \times (C_2^2:C_4)$, 32T36 $64$: 16T106 x 2, 32T198 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_4$ x 2, $C_2^2$, $D_{4}$ x 2
Degree 8: $C_4\times C_2$, $D_4\times C_2$, $Q_8:C_2$
Degree 16: $C_4 \times D_4$, 16T107 x 2
Low degree siblings
32T1412 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)$ |
| 2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)$ |
| 2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
| 2D | $2^{16}$ | $2$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
| 2E | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| 2F | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,28)( 2,27)( 3,26)( 4,25)( 5,21)( 6,22)( 7,23)( 8,24)( 9,17)(10,18)(11,19)(12,20)(13,30)(14,29)(15,32)(16,31)$ |
| 2G | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,25)( 2,26)( 3,27)( 4,28)( 5,24)( 6,23)( 7,22)( 8,21)( 9,20)(10,19)(11,18)(12,17)(13,31)(14,32)(15,29)(16,30)$ |
| 4A1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,13, 3,15)( 2,14, 4,16)( 5,11, 7, 9)( 6,12, 8,10)(17,21,19,23)(18,22,20,24)(25,31,27,29)(26,32,28,30)$ |
| 4A-1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,15, 3,13)( 2,16, 4,14)( 5, 9, 7,11)( 6,10, 8,12)(17,23,19,21)(18,24,20,22)(25,29,27,31)(26,30,28,32)$ |
| 4B1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,14, 3,16)( 2,13, 4,15)( 5,12, 7,10)( 6,11, 8, 9)(17,22,19,24)(18,21,20,23)(25,32,27,30)(26,31,28,29)$ |
| 4B-1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1,16, 3,14)( 2,15, 4,13)( 5,10, 7,12)( 6, 9, 8,11)(17,24,19,22)(18,23,20,21)(25,30,27,32)(26,29,28,31)$ |
| 4C | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,16, 3,14)( 2,15, 4,13)( 5,10, 7,12)( 6, 9, 8,11)(17,22,19,24)(18,21,20,23)(25,32,27,30)(26,31,28,29)$ |
| 4D | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,13, 3,15)( 2,14, 4,16)( 5,11, 7, 9)( 6,12, 8,10)(17,23,19,21)(18,24,20,22)(25,29,27,31)(26,30,28,32)$ |
| 4E1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 9, 4,12)( 2,10, 3,11)( 5,16, 8,13)( 6,15, 7,14)(17,25,20,28)(18,26,19,27)(21,31,24,30)(22,32,23,29)$ |
| 4E-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,12, 4, 9)( 2,11, 3,10)( 5,13, 8,16)( 6,14, 7,15)(17,28,20,25)(18,27,19,26)(21,30,24,31)(22,29,23,32)$ |
| 4F1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 8, 2, 7)( 3, 6, 4, 5)( 9,13,10,14)(11,15,12,16)(17,32,18,31)(19,30,20,29)(21,28,22,27)(23,26,24,25)$ |
| 4F-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,16,10,15)(11,14,12,13)(17,29,18,30)(19,31,20,32)(21,25,22,26)(23,27,24,28)$ |
| 4G1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,12, 4, 9)( 2,11, 3,10)( 5,13, 8,16)( 6,14, 7,15)(17,26,20,27)(18,25,19,28)(21,32,24,29)(22,31,23,30)$ |
| 4G-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 9, 4,12)( 2,10, 3,11)( 5,16, 8,13)( 6,15, 7,14)(17,27,20,26)(18,28,19,25)(21,29,24,32)(22,30,23,31)$ |
| 4H1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,16,10,15)(11,14,12,13)(17,31,18,32)(19,29,20,30)(21,27,22,28)(23,25,24,26)$ |
| 4H-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 8, 2, 7)( 3, 6, 4, 5)( 9,13,10,14)(11,15,12,16)(17,30,18,29)(19,32,20,31)(21,26,22,25)(23,28,24,27)$ |
| 4I | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,25, 3,27)( 2,26, 4,28)( 5,24, 7,22)( 6,23, 8,21)( 9,20,11,18)(10,19,12,17)(13,31,15,29)(14,32,16,30)$ |
| 4J | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,28, 3,26)( 2,27, 4,25)( 5,21, 7,23)( 6,22, 8,24)( 9,17,11,19)(10,18,12,20)(13,30,15,32)(14,29,16,31)$ |
| 4K1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 5, 4, 8)( 2, 6, 3, 7)( 9,14,12,15)(10,13,11,16)(17,28,18,27)(19,26,20,25)(21,30,22,29)(23,32,24,31)$ |
| 4K-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 8, 4, 5)( 2, 7, 3, 6)( 9,15,12,14)(10,16,11,13)(17,27,18,28)(19,25,20,26)(21,29,22,30)(23,31,24,32)$ |
| 4L1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,17, 4,20)( 2,18, 3,19)( 5,31, 8,30)( 6,32, 7,29)( 9,25,12,28)(10,26,11,27)(13,21,16,24)(14,22,15,23)$ |
| 4L-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,20, 4,17)( 2,19, 3,18)( 5,30, 8,31)( 6,29, 7,32)( 9,28,12,25)(10,27,11,26)(13,24,16,21)(14,23,15,22)$ |
| 4M1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 8, 4, 5)( 2, 7, 3, 6)( 9,15,12,14)(10,16,11,13)(17,25,18,26)(19,27,20,28)(21,31,22,32)(23,29,24,30)$ |
| 4M-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 5, 4, 8)( 2, 6, 3, 7)( 9,14,12,15)(10,13,11,16)(17,26,18,25)(19,28,20,27)(21,32,22,31)(23,30,24,29)$ |
| 4N1 | $4^{4},2^{4},1^{8}$ | $4$ | $4$ | $16$ | $( 1,16, 3,14)( 2,15, 4,13)( 5,12, 7,10)( 6,11, 8, 9)(25,27)(26,28)(29,31)(30,32)$ |
| 4N-1 | $4^{4},2^{4},1^{8}$ | $4$ | $4$ | $16$ | $( 1,16, 3,14)( 2,15, 4,13)( 5,12, 7,10)( 6,11, 8, 9)(17,19)(18,20)(21,23)(22,24)$ |
| 4O1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,20, 2,19)( 3,18, 4,17)( 5,30, 6,29)( 7,32, 8,31)( 9,28,10,27)(11,26,12,25)(13,24,14,23)(15,22,16,21)$ |
| 4O-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,17, 2,18)( 3,19, 4,20)( 5,31, 6,32)( 7,29, 8,30)( 9,25,10,26)(11,27,12,28)(13,21,14,22)(15,23,16,24)$ |
| 4P1 | $4^{4},2^{8}$ | $4$ | $4$ | $20$ | $( 1,13, 3,15)( 2,14, 4,16)( 5, 9, 7,11)( 6,10, 8,12)(17,20)(18,19)(21,24)(22,23)(25,26)(27,28)(29,30)(31,32)$ |
| 4P-1 | $4^{4},2^{8}$ | $4$ | $4$ | $20$ | $( 1,13, 3,15)( 2,14, 4,16)( 5, 9, 7,11)( 6,10, 8,12)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(29,32)(30,31)$ |
| 8A1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,21,13,19, 3,23,15,17)( 2,22,14,20, 4,24,16,18)( 5,25,11,31, 7,27, 9,29)( 6,26,12,32, 8,28,10,30)$ |
| 8A-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,24,15,20, 3,22,13,18)( 2,23,16,19, 4,21,14,17)( 5,28, 9,32, 7,26,11,30)( 6,27,10,31, 8,25,12,29)$ |
| 8B1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,24,13,18, 3,22,15,20)( 2,23,14,17, 4,21,16,19)( 5,28,11,30, 7,26, 9,32)( 6,27,12,29, 8,25,10,31)$ |
| 8B-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,21,15,17, 3,23,13,19)( 2,22,16,18, 4,24,14,20)( 5,25, 9,29, 7,27,11,31)( 6,26,10,30, 8,28,12,32)$ |
| 8C1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,31,14,28, 3,29,16,26)( 2,32,13,27, 4,30,15,25)( 5,20,12,23, 7,18,10,21)( 6,19,11,24, 8,17, 9,22)$ |
| 8C-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,31,16,26, 3,29,14,28)( 2,32,15,25, 4,30,13,27)( 5,20,10,21, 7,18,12,23)( 6,19, 9,22, 8,17,11,24)$ |
| 8D1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,30,14,25, 3,32,16,27)( 2,29,13,26, 4,31,15,28)( 5,17,12,22, 7,19,10,24)( 6,18,11,21, 8,20, 9,23)$ |
| 8D-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,30,16,27, 3,32,14,25)( 2,29,15,28, 4,31,13,26)( 5,17,10,24, 7,19,12,22)( 6,18, 9,23, 8,20,11,21)$ |
Malle's constant $a(G)$: $1/8$
Character table
44 x 44 character table
Regular extensions
Data not computed