Show commands: Magma
Group invariants
Abstract group: | $C_2^4.D_4$ |
| |
Order: | $128=2^{7}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $1334$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,32,8,28,4,29,6,25)(2,31,7,27,3,30,5,26)(9,17,14,23,12,19,15,21)(10,18,13,24,11,20,16,22)$, $(1,15)(2,16)(3,13)(4,14)(5,10)(6,9)(7,11)(8,12)(17,32)(18,31)(19,29)(20,30)(21,28)(22,27)(23,25)(24,26)$, $(1,3)(2,4)(5,8)(6,7)(9,10)(11,12)(13,14)(15,16)(17,19)(18,20)(21,23)(22,24)$, $(1,2)(3,4)(5,6)(7,8)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $D_{4}$ x 4, $C_2^3$ x 15 $16$: $D_4\times C_2$ x 6, $C_2^4$ $32$: $Q_8:C_2^2$ x 2, $C_2^2 \times D_4$, 16T44 x 2 $64$: 16T87, 16T100, 32T282 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4$, $Q_8:C_2^2$ x 2
Low degree siblings
32T1334 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 7)( 6, 8)( 9,12)(10,11)(13,16)(14,15)(17,19)(18,20)(21,23)(22,24)(25,28)(26,27)(29,32)(30,31)$ |
2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,15)(14,16)(17,20)(18,19)(21,24)(22,23)(25,27)(26,28)(29,31)(30,32)$ |
2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
2D | $2^{16}$ | $2$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,16)(14,15)(17,19)(18,20)(21,23)(22,24)(25,26)(27,28)(29,30)(31,32)$ |
2E | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)(25,27)(26,28)(29,31)(30,32)$ |
2F | $2^{12},1^{8}$ | $4$ | $2$ | $12$ | $( 9,10)(11,12)(13,14)(15,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)$ |
2G | $2^{12},1^{8}$ | $4$ | $2$ | $12$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,10)(11,12)(13,14)(15,16)(17,19)(18,20)(21,23)(22,24)$ |
2H | $2^{16}$ | $8$ | $2$ | $16$ | $( 1,22)( 2,21)( 3,23)( 4,24)( 5,17)( 6,18)( 7,19)( 8,20)( 9,25)(10,26)(11,27)(12,28)(13,30)(14,29)(15,32)(16,31)$ |
2I | $2^{16}$ | $8$ | $2$ | $16$ | $( 1,16)( 2,15)( 3,14)( 4,13)( 5, 9)( 6,10)( 7,12)( 8,11)(17,31)(18,32)(19,30)(20,29)(21,27)(22,28)(23,26)(24,25)$ |
4A | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,13,12,16)(10,14,11,15)(17,24,19,22)(18,23,20,21)(25,31,28,30)(26,32,27,29)$ |
4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 8, 4, 6)( 2, 7, 3, 5)( 9,14,12,15)(10,13,11,16)(17,23,19,21)(18,24,20,22)(25,32,28,29)(26,31,27,30)$ |
4C1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 5, 4, 7)( 2, 6, 3, 8)( 9,15,12,14)(10,16,11,13)(17,24,19,22)(18,23,20,21)(25,32,28,29)(26,31,27,30)$ |
4C-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 7, 4, 5)( 2, 8, 3, 6)( 9,14,12,15)(10,13,11,16)(17,22,19,24)(18,21,20,23)(25,29,28,32)(26,30,27,31)$ |
4D1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 6, 4, 8)( 2, 5, 3, 7)( 9,13,12,16)(10,14,11,15)(17,24,19,22)(18,23,20,21)(25,29,28,32)(26,30,27,31)$ |
4D-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 8, 4, 6)( 2, 7, 3, 5)( 9,16,12,13)(10,15,11,14)(17,22,19,24)(18,21,20,23)(25,32,28,29)(26,31,27,30)$ |
4E1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 6, 4, 8)( 2, 5, 3, 7)( 9,14,12,15)(10,13,11,16)(17,22,19,24)(18,21,20,23)(25,31,28,30)(26,32,27,29)$ |
4E-1 | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 8, 4, 6)( 2, 7, 3, 5)( 9,15,12,14)(10,16,11,13)(17,24,19,22)(18,23,20,21)(25,30,28,31)(26,29,27,32)$ |
4F | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,17, 3,20)( 2,18, 4,19)( 5,24, 8,21)( 6,23, 7,22)( 9,29,11,31)(10,30,12,32)(13,27,15,25)(14,28,16,26)$ |
4G | $4^{8}$ | $8$ | $4$ | $24$ | $( 1, 9, 3,11)( 2,10, 4,12)( 5,13, 8,15)( 6,14, 7,16)(17,26,20,28)(18,25,19,27)(21,31,24,29)(22,32,23,30)$ |
4H | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,24, 2,23)( 3,21, 4,22)( 5,19, 6,20)( 7,17, 8,18)( 9,25,10,26)(11,27,12,28)(13,30,14,29)(15,32,16,31)$ |
4I | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,17, 4,19)( 2,18, 3,20)( 5,24, 7,22)( 6,23, 8,21)( 9,32,12,29)(10,31,11,30)(13,26,16,27)(14,25,15,28)$ |
4J | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,13, 4,16)( 2,14, 3,15)( 5,12, 7, 9)( 6,11, 8,10)(17,29,19,32)(18,30,20,31)(21,25,23,28)(22,26,24,27)$ |
4K | $4^{8}$ | $8$ | $4$ | $24$ | $( 1, 9, 2,10)( 3,11, 4,12)( 5,13, 6,14)( 7,16, 8,15)(17,25,18,26)(19,28,20,27)(21,32,22,31)(23,29,24,30)$ |
8A1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,28, 7,30, 4,25, 5,31)( 2,27, 8,29, 3,26, 6,32)( 9,24,13,19,12,22,16,17)(10,23,14,20,11,21,15,18)$ |
8A3 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,25, 7,31, 4,28, 5,30)( 2,26, 8,32, 3,27, 6,29)( 9,22,13,17,12,24,16,19)(10,21,14,18,11,23,15,20)$ |
8B1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,31, 8,27, 4,30, 6,26)( 2,32, 7,28, 3,29, 5,25)( 9,18,14,24,12,20,15,22)(10,17,13,23,11,19,16,21)$ |
8B-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,30, 8,26, 4,31, 6,27)( 2,29, 7,25, 3,32, 5,28)( 9,20,14,22,12,18,15,24)(10,19,13,21,11,17,16,23)$ |
8C1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,32, 5,26, 4,29, 7,27)( 2,31, 6,25, 3,30, 8,28)( 9,19,16,24,12,17,13,22)(10,20,15,23,11,18,14,21)$ |
8C3 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,29, 5,27, 4,32, 7,26)( 2,30, 6,28, 3,31, 8,25)( 9,17,16,22,12,19,13,24)(10,18,15,21,11,20,14,23)$ |
8D1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,26, 6,30, 4,27, 8,31)( 2,25, 5,29, 3,28, 7,32)( 9,23,15,17,12,21,14,19)(10,24,16,18,11,22,13,20)$ |
8D-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,27, 6,31, 4,26, 8,30)( 2,28, 5,32, 3,25, 7,29)( 9,21,15,19,12,23,14,17)(10,22,16,20,11,24,13,18)$ |
Malle's constant $a(G)$: $1/8$
Character table
32 x 32 character table
Regular extensions
Data not computed