Show commands: Magma
Group invariants
| Abstract group: | $(C_2\times D_4).D_4$ |
| |
| Order: | $128=2^{7}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $32$ |
| |
| Transitive number $t$: | $1167$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $4$ |
| |
| Generators: | $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)$, $(1,26,4,27)(2,25,3,28)(5,22,8,23)(6,21,7,24)(9,20,12,17)(10,19,11,18)(13,30,16,31)(14,29,15,32)$, $(1,28,16,31,3,26,14,29)(2,27,15,32,4,25,13,30)(5,19,10,22,7,17,12,24)(6,20,9,21,8,18,11,23)$, $(1,18,3,20)(2,17,4,19)(5,29,7,31)(6,30,8,32)(9,27,11,25)(10,28,12,26)(13,22,15,24)(14,21,16,23)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_2^2$ x 35 $8$: $D_{4}$ x 4, $C_2^3$ x 15 $16$: $D_4\times C_2$ x 6, $Q_8:C_2$ x 4, $C_2^4$ $32$: $C_2 \times (C_4\times C_2):C_2$ x 2, $C_2^2 \times D_4$, 16T37 x 4 $64$: 16T80, 16T116, 32T205 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 8: $D_4\times C_2$, $Q_8:C_2$ x 2
Low degree siblings
32T1167 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)$ |
| 2B | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
| 2C | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,20)(18,19)(21,24)(22,23)(25,28)(26,27)(29,32)(30,31)$ |
| 2D | $2^{8},1^{16}$ | $2$ | $2$ | $8$ | $( 1, 3)( 2, 4)( 5, 7)( 6, 8)( 9,11)(10,12)(13,15)(14,16)$ |
| 2E | $2^{16}$ | $2$ | $2$ | $16$ | $( 1, 4)( 2, 3)( 5, 8)( 6, 7)( 9,12)(10,11)(13,16)(14,15)(17,18)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)(31,32)$ |
| 2F | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,23)( 2,24)( 3,21)( 4,22)( 5,28)( 6,27)( 7,26)( 8,25)( 9,32)(10,31)(11,30)(12,29)(13,17)(14,18)(15,19)(16,20)$ |
| 2G | $2^{16}$ | $4$ | $2$ | $16$ | $( 1,18)( 2,17)( 3,20)( 4,19)( 5,29)( 6,30)( 7,31)( 8,32)( 9,27)(10,28)(11,25)(12,26)(13,22)(14,21)(15,24)(16,23)$ |
| 2H | $2^{14},1^{4}$ | $8$ | $2$ | $14$ | $( 1,13)( 2,14)( 3,15)( 4,16)( 5, 8)( 6, 7)( 9,10)(11,12)(17,24)(18,23)(19,22)(20,21)(25,27)(26,28)$ |
| 2I | $2^{14},1^{4}$ | $8$ | $2$ | $14$ | $( 1,15)( 2,16)( 3,13)( 4,14)( 5, 6)( 7, 8)( 9,12)(10,11)(17,24)(18,23)(19,22)(20,21)(25,27)(26,28)$ |
| 4A | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,14, 3,16)( 2,13, 4,15)( 5,12, 7,10)( 6,11, 8, 9)(17,24,19,22)(18,23,20,21)(25,30,27,32)(26,29,28,31)$ |
| 4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,13, 3,15)( 2,14, 4,16)( 5,11, 7, 9)( 6,12, 8,10)(17,23,19,21)(18,24,20,22)(25,29,27,31)(26,30,28,32)$ |
| 4C | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,15, 3,13)( 2,16, 4,14)( 5, 9, 7,11)( 6,10, 8,12)(17,23,19,21)(18,24,20,22)(25,29,27,31)(26,30,28,32)$ |
| 4D | $4^{8}$ | $2$ | $4$ | $24$ | $( 1,16, 3,14)( 2,15, 4,13)( 5,10, 7,12)( 6, 9, 8,11)(17,24,19,22)(18,23,20,21)(25,30,27,32)(26,29,28,31)$ |
| 4E | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,20, 3,18)( 2,19, 4,17)( 5,31, 7,29)( 6,32, 8,30)( 9,25,11,27)(10,26,12,28)(13,24,15,22)(14,23,16,21)$ |
| 4F | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,21, 3,23)( 2,22, 4,24)( 5,26, 7,28)( 6,25, 8,27)( 9,30,11,32)(10,29,12,31)(13,19,15,17)(14,20,16,18)$ |
| 4G1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 7, 2, 8)( 3, 5, 4, 6)( 9,16,10,15)(11,14,12,13)(17,30,18,29)(19,32,20,31)(21,28,22,27)(23,26,24,25)$ |
| 4G-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 8, 2, 7)( 3, 6, 4, 5)( 9,15,10,16)(11,13,12,14)(17,29,18,30)(19,31,20,32)(21,27,22,28)(23,25,24,26)$ |
| 4H1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,26, 2,25)( 3,28, 4,27)( 5,22, 6,21)( 7,24, 8,23)( 9,20,10,19)(11,18,12,17)(13,30,14,29)(15,32,16,31)$ |
| 4H-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,29, 2,30)( 3,31, 4,32)( 5,17, 6,18)( 7,19, 8,20)( 9,21,10,22)(11,23,12,24)(13,27,14,28)(15,25,16,26)$ |
| 4I1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 5, 2, 6)( 3, 7, 4, 8)( 9,14,10,13)(11,16,12,15)(17,30,18,29)(19,32,20,31)(21,28,22,27)(23,26,24,25)$ |
| 4I-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 6, 2, 5)( 3, 8, 4, 7)( 9,13,10,14)(11,15,12,16)(17,29,18,30)(19,31,20,32)(21,27,22,28)(23,25,24,26)$ |
| 4J1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,28, 4,25)( 2,27, 3,26)( 5,24, 8,21)( 6,23, 7,22)( 9,18,12,19)(10,17,11,20)(13,32,16,29)(14,31,15,30)$ |
| 4J-1 | $4^{8}$ | $4$ | $4$ | $24$ | $( 1,31, 4,30)( 2,32, 3,29)( 5,19, 8,18)( 6,20, 7,17)( 9,23,12,22)(10,24,11,21)(13,25,16,28)(14,26,15,27)$ |
| 4K | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,18, 2,17)( 3,20, 4,19)( 5,26, 6,25)( 7,28, 8,27)( 9,32,10,31)(11,30,12,29)(13,24,14,23)(15,22,16,21)$ |
| 4L | $4^{8}$ | $8$ | $4$ | $24$ | $( 1,20, 4,17)( 2,19, 3,18)( 5,28, 8,25)( 6,27, 7,26)( 9,30,12,31)(10,29,11,32)(13,22,16,23)(14,21,15,24)$ |
| 8A1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1, 5,15, 9, 3, 7,13,11)( 2, 6,16,10, 4, 8,14,12)(17,29,23,27,19,31,21,25)(18,30,24,28,20,32,22,26)$ |
| 8A3 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1, 7,15,11, 3, 5,13, 9)( 2, 8,16,12, 4, 6,14,10)(17,31,23,25,19,29,21,27)(18,32,24,26,20,30,22,28)$ |
| 8B1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1, 7,15,11, 3, 5,13, 9)( 2, 8,16,12, 4, 6,14,10)(17,29,23,27,19,31,21,25)(18,30,24,28,20,32,22,26)$ |
| 8B-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1, 5,15, 9, 3, 7,13,11)( 2, 6,16,10, 4, 8,14,12)(17,31,23,25,19,29,21,27)(18,32,24,26,20,30,22,28)$ |
| 8C | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,27,16,32, 3,25,14,30)( 2,28,15,31, 4,26,13,29)( 5,20,10,21, 7,18,12,23)( 6,19, 9,22, 8,17,11,24)$ |
| 8D | $8^{4}$ | $8$ | $8$ | $28$ | $( 1,25,14,32, 3,27,16,30)( 2,26,13,31, 4,28,15,29)( 5,18,12,21, 7,20,10,23)( 6,17,11,22, 8,19, 9,24)$ |
Malle's constant $a(G)$: $1/8$
Character table
32 x 32 character table
Regular extensions
Data not computed