Show commands: Magma
Group invariants
Abstract group: | $\OD_{32}:C_2$ |
| |
Order: | $64=2^{6}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | $3$ |
|
Group action invariants
Degree $n$: | $32$ |
| |
Transitive number $t$: | $108$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,7,3,6)(2,8,4,5)(9,16,11,13)(10,15,12,14)(17,22,20,24)(18,21,19,23)(25,29,27,31)(26,30,28,32)$, $(1,15,23,32,5,10,17,26,3,14,21,30,8,12,20,28)(2,16,24,31,6,9,18,25,4,13,22,29,7,11,19,27)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $D_{4}$ x 2, $C_8$ x 2, $C_4\times C_2$ $16$: $C_8:C_2$, $C_2^2:C_4$, $C_8\times C_2$ $32$: $C_2^2 : C_8$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 8: $C_8$, $C_8:C_2$, $C_2^2:C_4$
Degree 16: $C_2^2 : C_8$, 16T104
Low degree siblings
16T104, 32T107Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{32}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{16}$ | $1$ | $2$ | $16$ | $( 1, 3)( 2, 4)( 5, 8)( 6, 7)( 9,11)(10,12)(13,16)(14,15)(17,20)(18,19)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)$ |
2B | $2^{16}$ | $2$ | $2$ | $16$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,12)(10,11)(13,15)(14,16)(17,18)(19,20)(21,22)(23,24)(25,28)(26,27)(29,32)(30,31)$ |
2C | $2^{12},1^{8}$ | $4$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)(17,19)(18,20)(21,24)(22,23)(25,27)(26,28)(29,31)(30,32)$ |
4A1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1, 8, 3, 5)( 2, 7, 4, 6)( 9,16,11,13)(10,15,12,14)(17,23,20,21)(18,24,19,22)(25,31,27,29)(26,32,28,30)$ |
4A-1 | $4^{8}$ | $1$ | $4$ | $24$ | $( 1, 5, 3, 8)( 2, 6, 4, 7)( 9,13,11,16)(10,14,12,15)(17,21,20,23)(18,22,19,24)(25,29,27,31)(26,30,28,32)$ |
4B | $4^{8}$ | $2$ | $4$ | $24$ | $( 1, 7, 3, 6)( 2, 8, 4, 5)( 9,14,11,15)(10,13,12,16)(17,24,20,22)(18,23,19,21)(25,30,27,32)(26,29,28,31)$ |
4C | $4^{8}$ | $4$ | $4$ | $24$ | $( 1, 6, 3, 7)( 2, 5, 4, 8)( 9,13,11,16)(10,14,12,15)(17,24,20,22)(18,23,19,21)(25,31,27,29)(26,32,28,30)$ |
8A1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,23, 5,17, 3,21, 8,20)( 2,24, 6,18, 4,22, 7,19)( 9,25,13,29,11,27,16,31)(10,26,14,30,12,28,15,32)$ |
8A-1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,20, 8,21, 3,17, 5,23)( 2,19, 7,22, 4,18, 6,24)( 9,31,16,27,11,29,13,25)(10,32,15,28,12,30,14,26)$ |
8B1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,18, 8,24, 3,19, 5,22)( 2,17, 7,23, 4,20, 6,21)( 9,32,16,28,11,30,13,26)(10,31,15,27,12,29,14,25)$ |
8B-1 | $8^{4}$ | $2$ | $8$ | $28$ | $( 1,22, 5,19, 3,24, 8,18)( 2,21, 6,20, 4,23, 7,17)( 9,26,13,30,11,28,16,32)(10,25,14,29,12,27,15,31)$ |
8C1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,22, 8,18, 3,24, 5,19)( 2,21, 7,17, 4,23, 6,20)( 9,27,16,29,11,25,13,31)(10,28,15,30,12,26,14,32)$ |
8C-1 | $8^{4}$ | $4$ | $8$ | $28$ | $( 1,18, 5,22, 3,19, 8,24)( 2,17, 6,21, 4,20, 7,23)( 9,29,13,27,11,31,16,25)(10,30,14,28,12,32,15,26)$ |
16A1 | $16^{2}$ | $4$ | $16$ | $30$ | $( 1,15,23,32, 5,10,17,26, 3,14,21,30, 8,12,20,28)( 2,16,24,31, 6, 9,18,25, 4,13,22,29, 7,11,19,27)$ |
16A-1 | $16^{2}$ | $4$ | $16$ | $30$ | $( 1,28,20,12, 8,30,21,14, 3,26,17,10, 5,32,23,15)( 2,27,19,11, 7,29,22,13, 4,25,18, 9, 6,31,24,16)$ |
16A3 | $16^{2}$ | $4$ | $16$ | $30$ | $( 1,32,17,14, 8,28,23,10, 3,30,20,15, 5,26,21,12)( 2,31,18,13, 7,27,24, 9, 4,29,19,16, 6,25,22,11)$ |
16A-3 | $16^{2}$ | $4$ | $16$ | $30$ | $( 1,12,21,26, 5,15,20,30, 3,10,23,28, 8,14,17,32)( 2,11,22,25, 6,16,19,29, 4, 9,24,27, 7,13,18,31)$ |
16B1 | $16^{2}$ | $4$ | $16$ | $30$ | $( 1,30,18,13, 8,26,24, 9, 3,32,19,16, 5,28,22,11)( 2,29,17,14, 7,25,23,10, 4,31,20,15, 6,27,21,12)$ |
16B-1 | $16^{2}$ | $4$ | $16$ | $30$ | $( 1,10,24,27, 5,14,18,31, 3,12,22,25, 8,15,19,29)( 2, 9,23,28, 6,13,17,32, 4,11,21,26, 7,16,20,30)$ |
16B3 | $16^{2}$ | $4$ | $16$ | $30$ | $( 1,15,22,31, 5,10,19,25, 3,14,24,29, 8,12,18,27)( 2,16,21,32, 6, 9,20,26, 4,13,23,30, 7,11,17,28)$ |
16B-3 | $16^{2}$ | $4$ | $16$ | $30$ | $( 1,26,19,11, 8,32,22,13, 3,28,18, 9, 5,30,24,16)( 2,25,20,12, 7,31,21,14, 4,27,17,10, 6,29,23,15)$ |
Malle's constant $a(G)$: $1/12$
Character table
1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B | 4C | 8A1 | 8A-1 | 8B1 | 8B-1 | 8C1 | 8C-1 | 16A1 | 16A-1 | 16A3 | 16A-3 | 16B1 | 16B-1 | 16B3 | 16B-3 | ||
Size | 1 | 1 | 2 | 4 | 1 | 1 | 2 | 4 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 4A-1 | 4A1 | 4A1 | 4A-1 | 4A1 | 4A-1 | 8A1 | 8A-1 | 8A-1 | 8A1 | 8B1 | 8B-1 | 8B-1 | 8B1 | |
Type | |||||||||||||||||||||||
64.30.1a | R | ||||||||||||||||||||||
64.30.1b | R | ||||||||||||||||||||||
64.30.1c | R | ||||||||||||||||||||||
64.30.1d | R | ||||||||||||||||||||||
64.30.1e1 | C | ||||||||||||||||||||||
64.30.1e2 | C | ||||||||||||||||||||||
64.30.1f1 | C | ||||||||||||||||||||||
64.30.1f2 | C | ||||||||||||||||||||||
64.30.1g1 | C | ||||||||||||||||||||||
64.30.1g2 | C | ||||||||||||||||||||||
64.30.1g3 | C | ||||||||||||||||||||||
64.30.1g4 | C | ||||||||||||||||||||||
64.30.1h1 | C | ||||||||||||||||||||||
64.30.1h2 | C | ||||||||||||||||||||||
64.30.1h3 | C | ||||||||||||||||||||||
64.30.1h4 | C | ||||||||||||||||||||||
64.30.2a | R | ||||||||||||||||||||||
64.30.2b | R | ||||||||||||||||||||||
64.30.2c1 | C | ||||||||||||||||||||||
64.30.2c2 | C | ||||||||||||||||||||||
64.30.4a1 | C | ||||||||||||||||||||||
64.30.4a2 | C |
Regular extensions
Data not computed