Properties

Label 30T79
30T79 1 3 1->3 24 1->24 2 2->1 23 2->23 3->2 22 3->22 4 4->2 10 4->10 5 5->1 11 5->11 6 6->3 12 6->12 7 27 7->27 29 7->29 8 25 8->25 28 8->28 9 26 9->26 30 9->30 10->5 10->7 11->6 11->9 12->4 12->8 13 13->4 19 13->19 14 14->6 20 14->20 15 15->5 21 15->21 16 16->14 16->28 17 17->13 17->29 18 18->15 18->30 19->12 19->14 20->11 20->15 21->10 21->13 22->21 22->24 23->20 23->22 24->19 24->23 25->9 25->16 26->7 26->18 27->8 27->17 28->17 28->26 29->18 29->25 30->16 30->27
Degree $30$
Order $300$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_{15}:D_{10}$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(30, 79);
 

Group invariants

Abstract group:  $C_{15}:D_{10}$
Copy content magma:IdentifyGroup(G);
 
Order:  $300=2^{2} \cdot 3 \cdot 5^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $30$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $79$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $3$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,3,2)(4,10,5,11,6,12)(7,27,8,25,9,26)(13,19,14,20,15,21)(16,28,17,29,18,30)(22,24,23)$, $(1,24,19,12,8,28,26,18,15,5)(2,23,20,11,9,30,27,17,13,4)(3,22,21,10,7,29,25,16,14,6)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$6$:  $S_3$
$10$:  $D_{5}$ x 2
$12$:  $D_{6}$
$20$:  $D_{10}$ x 2
$60$:  $D_5\times S_3$ x 2
$100$:  $D_5^2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$

Degree 5: None

Degree 6: $S_3$

Degree 10: $D_5^2$

Degree 15: None

Low degree siblings

30T79

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{30}$ $1$ $1$ $0$ $()$
2A $2^{15}$ $15$ $2$ $15$ $( 1,11)( 2,10)( 3,12)( 4,26)( 5,25)( 6,27)( 7,18)( 8,17)( 9,16)(13,22)(14,24)(15,23)(19,30)(20,29)(21,28)$
2B $2^{15}$ $15$ $2$ $15$ $( 1,28)( 2,30)( 3,29)( 4,27)( 5,26)( 6,25)( 7,22)( 8,24)( 9,23)(10,21)(11,20)(12,19)(13,17)(14,16)(15,18)$
2C $2^{12},1^{6}$ $25$ $2$ $12$ $( 4,30)( 5,28)( 6,29)( 7,25)( 8,26)( 9,27)(10,22)(11,23)(12,24)(13,20)(14,21)(15,19)$
3A $3^{10}$ $2$ $3$ $20$ $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$
5A1 $5^{6}$ $2$ $5$ $24$ $( 1, 8,15,19,26)( 2, 9,13,20,27)( 3, 7,14,21,25)( 4,30,23,17,11)( 5,28,24,18,12)( 6,29,22,16,10)$
5A2 $5^{6}$ $2$ $5$ $24$ $( 1,15,26, 8,19)( 2,13,27, 9,20)( 3,14,25, 7,21)( 4,23,11,30,17)( 5,24,12,28,18)( 6,22,10,29,16)$
5B1 $5^{6}$ $2$ $5$ $24$ $( 1,26,19,15, 8)( 2,27,20,13, 9)( 3,25,21,14, 7)( 4,30,23,17,11)( 5,28,24,18,12)( 6,29,22,16,10)$
5B2 $5^{6}$ $2$ $5$ $24$ $( 1,19, 8,26,15)( 2,20, 9,27,13)( 3,21, 7,25,14)( 4,23,11,30,17)( 5,24,12,28,18)( 6,22,10,29,16)$
5C1 $5^{3},1^{15}$ $4$ $5$ $12$ $( 4,23,11,30,17)( 5,24,12,28,18)( 6,22,10,29,16)$
5C2 $5^{3},1^{15}$ $4$ $5$ $12$ $( 4,11,17,23,30)( 5,12,18,24,28)( 6,10,16,22,29)$
5D1 $5^{6}$ $4$ $5$ $24$ $( 1, 8,15,19,26)( 2, 9,13,20,27)( 3, 7,14,21,25)( 4,17,30,11,23)( 5,18,28,12,24)( 6,16,29,10,22)$
5D2 $5^{6}$ $4$ $5$ $24$ $( 1,15,26, 8,19)( 2,13,27, 9,20)( 3,14,25, 7,21)( 4,30,23,17,11)( 5,28,24,18,12)( 6,29,22,16,10)$
6A $6^{4},3^{2}$ $50$ $6$ $24$ $( 1, 2, 3)( 4,28, 6,30, 5,29)( 7,26, 9,25, 8,27)(10,23,12,22,11,24)(13,21,15,20,14,19)(16,17,18)$
10A1 $10^{3}$ $30$ $10$ $27$ $( 1,23,26,17,19,11,15, 4, 8,30)( 2,22,27,16,20,10,13, 6, 9,29)( 3,24,25,18,21,12,14, 5, 7,28)$
10A3 $10^{3}$ $30$ $10$ $27$ $( 1,17,15,30,26,11, 8,23,19, 4)( 2,16,13,29,27,10, 9,22,20, 6)( 3,18,14,28,25,12, 7,24,21, 5)$
10B1 $10^{3}$ $30$ $10$ $27$ $( 1,12, 8, 5,15,28,19,24,26,18)( 2,11, 9, 4,13,30,20,23,27,17)( 3,10, 7, 6,14,29,21,22,25,16)$
10B3 $10^{3}$ $30$ $10$ $27$ $( 1, 5,19,18, 8,28,26,12,15,24)( 2, 4,20,17, 9,30,27,11,13,23)( 3, 6,21,16, 7,29,25,10,14,22)$
15A1 $15^{2}$ $4$ $15$ $28$ $( 1,14,27, 8,21, 2,15,25, 9,19, 3,13,26, 7,20)( 4,22,12,30,16, 5,23,10,28,17, 6,24,11,29,18)$
15A2 $15^{2}$ $4$ $15$ $28$ $( 1,27,21,15, 9, 3,26,20,14, 8, 2,25,19,13, 7)( 4,12,16,23,28, 6,11,18,22,30, 5,10,17,24,29)$
15B1 $15^{2}$ $4$ $15$ $28$ $( 1,20, 7,26,13, 3,19, 9,25,15, 2,21, 8,27,14)( 4,24,10,30,18, 6,23,12,29,17, 5,22,11,28,16)$
15B2 $15^{2}$ $4$ $15$ $28$ $( 1, 9,14,19,27, 3, 8,13,21,26, 2, 7,15,20,25)( 4,12,16,23,28, 6,11,18,22,30, 5,10,17,24,29)$
15C1 $15,3^{5}$ $4$ $15$ $24$ $( 1, 3, 2)( 4,10,18,23,29, 5,11,16,24,30, 6,12,17,22,28)( 7, 9, 8)(13,15,14)(19,21,20)(25,27,26)$
15C-1 $15,3^{5}$ $4$ $15$ $24$ $( 1,25,20,15, 7, 2,26,21,13, 8, 3,27,19,14, 9)( 4, 6, 5)(10,12,11)(16,18,17)(22,24,23)(28,30,29)$
15C2 $15,3^{5}$ $4$ $15$ $24$ $( 1, 2, 3)( 4,18,29,11,24, 6,17,28,10,23, 5,16,30,12,22)( 7, 8, 9)(13,14,15)(19,20,21)(25,26,27)$
15C-2 $15,3^{5}$ $4$ $15$ $24$ $( 1,20, 7,26,13, 3,19, 9,25,15, 2,21, 8,27,14)( 4, 5, 6)(10,11,12)(16,17,18)(22,23,24)(28,29,30)$
15D1 $15^{2}$ $4$ $15$ $28$ $( 1,13,25, 8,20, 3,15,27, 7,19, 2,14,26, 9,21)( 4,28,22,17,12, 6,30,24,16,11, 5,29,23,18,10)$
15D-1 $15^{2}$ $4$ $15$ $28$ $( 1, 9,14,19,27, 3, 8,13,21,26, 2, 7,15,20,25)( 4,24,10,30,18, 6,23,12,29,17, 5,22,11,28,16)$
15D2 $15^{2}$ $4$ $15$ $28$ $( 1, 7,13,19,25, 2, 8,14,20,26, 3, 9,15,21,27)( 4,16,28,11,22, 5,17,29,12,23, 6,18,30,10,24)$
15D-2 $15^{2}$ $4$ $15$ $28$ $( 1,21, 9,26,14, 2,19, 7,27,15, 3,20, 8,25,13)( 4,29,24,17,10, 5,30,22,18,11, 6,28,23,16,12)$

Malle's constant $a(G)$:     $1/12$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 3A 5A1 5A2 5B1 5B2 5C1 5C2 5D1 5D2 6A 10A1 10A3 10B1 10B3 15A1 15A2 15B1 15B2 15C1 15C-1 15C2 15C-2 15D1 15D-1 15D2 15D-2
Size 1 15 15 25 2 2 2 2 2 4 4 4 4 50 30 30 30 30 4 4 4 4 4 4 4 4 4 4 4 4
2 P 1A 1A 1A 1A 3A 5A2 5A1 5B2 5B1 5C2 5C1 5D2 5D1 3A 5B1 5B2 5A1 5A2 15A2 15A1 15B2 15B1 15C2 15C-2 15C1 15C-1 15D2 15D-2 15D1 15D-1
3 P 1A 2A 2B 2C 1A 5A2 5A1 5B2 5B1 5C2 5C1 5D2 5D1 2C 10A3 10A1 10B3 10B1 5A1 5A2 5B1 5B2 5C1 5C1 5C2 5C2 5D1 5D1 5D2 5D2
5 P 1A 2A 2B 2C 3A 1A 1A 1A 1A 1A 1A 1A 1A 6A 2A 2A 2B 2B 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A 3A
Type
300.40.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
300.40.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
300.40.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
300.40.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
300.40.2a R 2 0 0 2 1 2 2 2 2 2 2 2 2 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
300.40.2b R 2 0 0 2 1 2 2 2 2 2 2 2 2 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
300.40.2c1 R 2 0 2 0 2 ζ52+ζ52 2 ζ51+ζ5 2 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 0 0 0 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5 2 ζ52+ζ52 2 ζ52+ζ52 ζ52+ζ52
300.40.2c2 R 2 0 2 0 2 ζ51+ζ5 2 ζ52+ζ52 2 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 0 0 0 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52 2 ζ51+ζ5 2 ζ51+ζ5 ζ51+ζ5
300.40.2d1 R 2 2 0 0 2 2 ζ52+ζ52 2 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 0 ζ51+ζ5 ζ52+ζ52 0 0 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 2 ζ51+ζ5 2 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52
300.40.2d2 R 2 2 0 0 2 2 ζ51+ζ5 2 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 0 ζ52+ζ52 ζ51+ζ5 0 0 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 2 ζ52+ζ52 2 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5
300.40.2e1 R 2 2 0 0 2 2 ζ52+ζ52 2 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 0 ζ51ζ5 ζ52ζ52 0 0 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 2 ζ51+ζ5 2 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52
300.40.2e2 R 2 2 0 0 2 2 ζ51+ζ5 2 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 0 ζ52ζ52 ζ51ζ5 0 0 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 2 ζ52+ζ52 2 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5
300.40.2f1 R 2 0 2 0 2 ζ52+ζ52 2 ζ51+ζ5 2 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 0 0 0 ζ52ζ52 ζ51ζ5 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 ζ51+ζ5 ζ51+ζ5 2 ζ52+ζ52 2 ζ52+ζ52 ζ52+ζ52
300.40.2f2 R 2 0 2 0 2 ζ51+ζ5 2 ζ52+ζ52 2 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 ζ51+ζ5 0 0 0 ζ51ζ5 ζ52ζ52 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ51+ζ5 ζ52+ζ52 ζ52+ζ52 ζ52+ζ52 2 ζ51+ζ5 2 ζ51+ζ5 ζ51+ζ5
300.40.4a1 R 4 0 0 0 4 2ζ52+2ζ52 2ζ52+2ζ52 2ζ51+2ζ5 2ζ51+2ζ5 1 ζ52+1ζ52 ζ52+2+ζ52 1 0 0 0 0 0 1 ζ52+2+ζ52 ζ52+2+ζ52 1 1 1 2ζ51+2ζ5 2ζ51+2ζ5 2ζ52+2ζ52 2ζ52+2ζ52 ζ52+1ζ52 ζ52+1ζ52
300.40.4a2 R 4 0 0 0 4 2ζ51+2ζ5 2ζ51+2ζ5 2ζ52+2ζ52 2ζ52+2ζ52 1 ζ52+2+ζ52 ζ52+1ζ52 1 0 0 0 0 0 1 ζ52+1ζ52 ζ52+1ζ52 1 1 1 2ζ52+2ζ52 2ζ52+2ζ52 2ζ51+2ζ5 2ζ51+2ζ5 ζ52+2+ζ52 ζ52+2+ζ52
300.40.4b1 R 4 0 0 0 4 2ζ52+2ζ52 2ζ51+2ζ5 2ζ51+2ζ5 2ζ52+2ζ52 ζ52+2+ζ52 1 1 ζ52+1ζ52 0 0 0 0 0 ζ52+1ζ52 1 1 ζ52+1ζ52 ζ52+2+ζ52 ζ52+2+ζ52 2ζ51+2ζ5 2ζ52+2ζ52 2ζ52+2ζ52 2ζ51+2ζ5 1 1
300.40.4b2 R 4 0 0 0 4 2ζ51+2ζ5 2ζ52+2ζ52 2ζ52+2ζ52 2ζ51+2ζ5 ζ52+1ζ52 1 1 ζ52+2+ζ52 0 0 0 0 0 ζ52+2+ζ52 1 1 ζ52+2+ζ52 ζ52+1ζ52 ζ52+1ζ52 2ζ52+2ζ52 2ζ51+2ζ5 2ζ51+2ζ5 2ζ52+2ζ52 1 1
300.40.4c1 R 4 0 0 0 2 2ζ52+2ζ52 4 2ζ51+2ζ5 4 2ζ51+2ζ5 2ζ52+2ζ52 2ζ51+2ζ5 2ζ52+2ζ52 0 0 0 0 0 ζ52ζ52 ζ51ζ5 ζ51ζ5 ζ52ζ52 ζ51ζ5 ζ51ζ5 ζ51ζ5 2 ζ52ζ52 2 ζ52ζ52 ζ52ζ52
300.40.4c2 R 4 0 0 0 2 2ζ51+2ζ5 4 2ζ52+2ζ52 4 2ζ52+2ζ52 2ζ51+2ζ5 2ζ52+2ζ52 2ζ51+2ζ5 0 0 0 0 0 ζ51ζ5 ζ52ζ52 ζ52ζ52 ζ51ζ5 ζ52ζ52 ζ52ζ52 ζ52ζ52 2 ζ51ζ5 2 ζ51ζ5 ζ51ζ5
300.40.4d1 R 4 0 0 0 2 4 2ζ52+2ζ52 4 2ζ51+2ζ5 2ζ52+2ζ52 2ζ52+2ζ52 2ζ51+2ζ5 2ζ51+2ζ5 0 0 0 0 0 ζ51ζ5 ζ51ζ5 ζ51ζ5 ζ51ζ5 ζ52ζ52 ζ52ζ52 2 ζ51ζ5 2 ζ52ζ52 ζ52ζ52 ζ52ζ52
300.40.4d2 R 4 0 0 0 2 4 2ζ51+2ζ5 4 2ζ52+2ζ52 2ζ51+2ζ5 2ζ51+2ζ5 2ζ52+2ζ52 2ζ52+2ζ52 0 0 0 0 0 ζ52ζ52 ζ52ζ52 ζ52ζ52 ζ52ζ52 ζ51ζ5 ζ51ζ5 2 ζ52ζ52 2 ζ51ζ5 ζ51ζ5 ζ51ζ5
300.40.4e1 C 4 0 0 0 2 2ζ156+2ζ156 2ζ156+2ζ156 2ζ153+2ζ153 2ζ153+2ζ153 1 2ζ152+ζ153ζ157 1+ζ152ζ153+ζ157 1 0 0 0 0 0 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1ζ15ζ152+ζ153ζ1542ζ155ζ157 ζ15+ζ154+2ζ155 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 ζ153ζ153 ζ153ζ153 ζ156ζ156 ζ156ζ156 3+ζ15+ζ152ζ153+ζ1543ζ155+ζ157 1ζ15ζ154+3ζ155
300.40.4e2 C 4 0 0 0 2 2ζ156+2ζ156 2ζ156+2ζ156 2ζ153+2ζ153 2ζ153+2ζ153 1 2ζ152+ζ153ζ157 1+ζ152ζ153+ζ157 1 0 0 0 0 0 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 ζ15+ζ154+2ζ155 1ζ15ζ152+ζ153ζ1542ζ155ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 ζ153ζ153 ζ153ζ153 ζ156ζ156 ζ156ζ156 1ζ15ζ154+3ζ155 3+ζ15+ζ152ζ153+ζ1543ζ155+ζ157
300.40.4e3 C 4 0 0 0 2 2ζ153+2ζ153 2ζ153+2ζ153 2ζ156+2ζ156 2ζ156+2ζ156 1 1+ζ152ζ153+ζ157 2ζ152+ζ153ζ157 1 0 0 0 0 0 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1ζ15ζ154+3ζ155 3+ζ15+ζ152ζ153+ζ1543ζ155+ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 ζ156ζ156 ζ156ζ156 ζ153ζ153 ζ153ζ153 ζ15+ζ154+2ζ155 1ζ15ζ152+ζ153ζ1542ζ155ζ157
300.40.4e4 C 4 0 0 0 2 2ζ153+2ζ153 2ζ153+2ζ153 2ζ156+2ζ156 2ζ156+2ζ156 1 1+ζ152ζ153+ζ157 2ζ152+ζ153ζ157 1 0 0 0 0 0 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 3+ζ15+ζ152ζ153+ζ1543ζ155+ζ157 1ζ15ζ154+3ζ155 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 ζ156ζ156 ζ156ζ156 ζ153ζ153 ζ153ζ153 1ζ15ζ152+ζ153ζ1542ζ155ζ157 ζ15+ζ154+2ζ155
300.40.4f1 C 4 0 0 0 2 2ζ156+2ζ156 2ζ153+2ζ153 2ζ153+2ζ153 2ζ156+2ζ156 1+ζ152ζ153+ζ157 1 1 2ζ152+ζ153ζ157 0 0 0 0 0 3+ζ15+ζ152ζ153+ζ1543ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 1ζ15ζ154+3ζ155 1ζ15ζ152+ζ153ζ1542ζ155ζ157 ζ15+ζ154+2ζ155 ζ153ζ153 ζ156ζ156 ζ156ζ156 ζ153ζ153 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157
300.40.4f2 C 4 0 0 0 2 2ζ156+2ζ156 2ζ153+2ζ153 2ζ153+2ζ153 2ζ156+2ζ156 1+ζ152ζ153+ζ157 1 1 2ζ152+ζ153ζ157 0 0 0 0 0 1ζ15ζ154+3ζ155 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 3+ζ15+ζ152ζ153+ζ1543ζ155+ζ157 ζ15+ζ154+2ζ155 1ζ15ζ152+ζ153ζ1542ζ155ζ157 ζ153ζ153 ζ156ζ156 ζ156ζ156 ζ153ζ153 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157
300.40.4f3 C 4 0 0 0 2 2ζ153+2ζ153 2ζ156+2ζ156 2ζ156+2ζ156 2ζ153+2ζ153 2ζ152+ζ153ζ157 1 1 1+ζ152ζ153+ζ157 0 0 0 0 0 1ζ15ζ152+ζ153ζ1542ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 ζ15+ζ154+2ζ155 3+ζ15+ζ152ζ153+ζ1543ζ155+ζ157 1ζ15ζ154+3ζ155 ζ156ζ156 ζ153ζ153 ζ153ζ153 ζ156ζ156 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157
300.40.4f4 C 4 0 0 0 2 2ζ153+2ζ153 2ζ156+2ζ156 2ζ156+2ζ156 2ζ153+2ζ153 2ζ152+ζ153ζ157 1 1 1+ζ152ζ153+ζ157 0 0 0 0 0 ζ15+ζ154+2ζ155 22ζ15ζ152+ζ1532ζ154+ζ155ζ157 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 1ζ15ζ152+ζ153ζ1542ζ155ζ157 1ζ15ζ154+3ζ155 3+ζ15+ζ152ζ153+ζ1543ζ155+ζ157 ζ156ζ156 ζ153ζ153 ζ153ζ153 ζ156ζ156 1+2ζ15+ζ152ζ153+2ζ154ζ155+ζ157 22ζ15ζ152+ζ1532ζ154+ζ155ζ157

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed