Show commands: Magma
Group invariants
Abstract group: | $C_{15}:D_{10}$ |
| |
Order: | $300=2^{2} \cdot 3 \cdot 5^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $30$ |
| |
Transitive number $t$: | $79$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $3$ |
| |
Generators: | $(1,3,2)(4,10,5,11,6,12)(7,27,8,25,9,26)(13,19,14,20,15,21)(16,28,17,29,18,30)(22,24,23)$, $(1,24,19,12,8,28,26,18,15,5)(2,23,20,11,9,30,27,17,13,4)(3,22,21,10,7,29,25,16,14,6)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $10$: $D_{5}$ x 2 $12$: $D_{6}$ $20$: $D_{10}$ x 2 $60$: $D_5\times S_3$ x 2 $100$: $D_5^2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 5: None
Degree 6: $S_3$
Degree 10: $D_5^2$
Degree 15: None
Low degree siblings
30T79Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{15}$ | $15$ | $2$ | $15$ | $( 1,11)( 2,10)( 3,12)( 4,26)( 5,25)( 6,27)( 7,18)( 8,17)( 9,16)(13,22)(14,24)(15,23)(19,30)(20,29)(21,28)$ |
2B | $2^{15}$ | $15$ | $2$ | $15$ | $( 1,28)( 2,30)( 3,29)( 4,27)( 5,26)( 6,25)( 7,22)( 8,24)( 9,23)(10,21)(11,20)(12,19)(13,17)(14,16)(15,18)$ |
2C | $2^{12},1^{6}$ | $25$ | $2$ | $12$ | $( 4,30)( 5,28)( 6,29)( 7,25)( 8,26)( 9,27)(10,22)(11,23)(12,24)(13,20)(14,21)(15,19)$ |
3A | $3^{10}$ | $2$ | $3$ | $20$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$ |
5A1 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1, 8,15,19,26)( 2, 9,13,20,27)( 3, 7,14,21,25)( 4,30,23,17,11)( 5,28,24,18,12)( 6,29,22,16,10)$ |
5A2 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1,15,26, 8,19)( 2,13,27, 9,20)( 3,14,25, 7,21)( 4,23,11,30,17)( 5,24,12,28,18)( 6,22,10,29,16)$ |
5B1 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1,26,19,15, 8)( 2,27,20,13, 9)( 3,25,21,14, 7)( 4,30,23,17,11)( 5,28,24,18,12)( 6,29,22,16,10)$ |
5B2 | $5^{6}$ | $2$ | $5$ | $24$ | $( 1,19, 8,26,15)( 2,20, 9,27,13)( 3,21, 7,25,14)( 4,23,11,30,17)( 5,24,12,28,18)( 6,22,10,29,16)$ |
5C1 | $5^{3},1^{15}$ | $4$ | $5$ | $12$ | $( 4,23,11,30,17)( 5,24,12,28,18)( 6,22,10,29,16)$ |
5C2 | $5^{3},1^{15}$ | $4$ | $5$ | $12$ | $( 4,11,17,23,30)( 5,12,18,24,28)( 6,10,16,22,29)$ |
5D1 | $5^{6}$ | $4$ | $5$ | $24$ | $( 1, 8,15,19,26)( 2, 9,13,20,27)( 3, 7,14,21,25)( 4,17,30,11,23)( 5,18,28,12,24)( 6,16,29,10,22)$ |
5D2 | $5^{6}$ | $4$ | $5$ | $24$ | $( 1,15,26, 8,19)( 2,13,27, 9,20)( 3,14,25, 7,21)( 4,30,23,17,11)( 5,28,24,18,12)( 6,29,22,16,10)$ |
6A | $6^{4},3^{2}$ | $50$ | $6$ | $24$ | $( 1, 2, 3)( 4,28, 6,30, 5,29)( 7,26, 9,25, 8,27)(10,23,12,22,11,24)(13,21,15,20,14,19)(16,17,18)$ |
10A1 | $10^{3}$ | $30$ | $10$ | $27$ | $( 1,23,26,17,19,11,15, 4, 8,30)( 2,22,27,16,20,10,13, 6, 9,29)( 3,24,25,18,21,12,14, 5, 7,28)$ |
10A3 | $10^{3}$ | $30$ | $10$ | $27$ | $( 1,17,15,30,26,11, 8,23,19, 4)( 2,16,13,29,27,10, 9,22,20, 6)( 3,18,14,28,25,12, 7,24,21, 5)$ |
10B1 | $10^{3}$ | $30$ | $10$ | $27$ | $( 1,12, 8, 5,15,28,19,24,26,18)( 2,11, 9, 4,13,30,20,23,27,17)( 3,10, 7, 6,14,29,21,22,25,16)$ |
10B3 | $10^{3}$ | $30$ | $10$ | $27$ | $( 1, 5,19,18, 8,28,26,12,15,24)( 2, 4,20,17, 9,30,27,11,13,23)( 3, 6,21,16, 7,29,25,10,14,22)$ |
15A1 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1,14,27, 8,21, 2,15,25, 9,19, 3,13,26, 7,20)( 4,22,12,30,16, 5,23,10,28,17, 6,24,11,29,18)$ |
15A2 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1,27,21,15, 9, 3,26,20,14, 8, 2,25,19,13, 7)( 4,12,16,23,28, 6,11,18,22,30, 5,10,17,24,29)$ |
15B1 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1,20, 7,26,13, 3,19, 9,25,15, 2,21, 8,27,14)( 4,24,10,30,18, 6,23,12,29,17, 5,22,11,28,16)$ |
15B2 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1, 9,14,19,27, 3, 8,13,21,26, 2, 7,15,20,25)( 4,12,16,23,28, 6,11,18,22,30, 5,10,17,24,29)$ |
15C1 | $15,3^{5}$ | $4$ | $15$ | $24$ | $( 1, 3, 2)( 4,10,18,23,29, 5,11,16,24,30, 6,12,17,22,28)( 7, 9, 8)(13,15,14)(19,21,20)(25,27,26)$ |
15C-1 | $15,3^{5}$ | $4$ | $15$ | $24$ | $( 1,25,20,15, 7, 2,26,21,13, 8, 3,27,19,14, 9)( 4, 6, 5)(10,12,11)(16,18,17)(22,24,23)(28,30,29)$ |
15C2 | $15,3^{5}$ | $4$ | $15$ | $24$ | $( 1, 2, 3)( 4,18,29,11,24, 6,17,28,10,23, 5,16,30,12,22)( 7, 8, 9)(13,14,15)(19,20,21)(25,26,27)$ |
15C-2 | $15,3^{5}$ | $4$ | $15$ | $24$ | $( 1,20, 7,26,13, 3,19, 9,25,15, 2,21, 8,27,14)( 4, 5, 6)(10,11,12)(16,17,18)(22,23,24)(28,29,30)$ |
15D1 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1,13,25, 8,20, 3,15,27, 7,19, 2,14,26, 9,21)( 4,28,22,17,12, 6,30,24,16,11, 5,29,23,18,10)$ |
15D-1 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1, 9,14,19,27, 3, 8,13,21,26, 2, 7,15,20,25)( 4,24,10,30,18, 6,23,12,29,17, 5,22,11,28,16)$ |
15D2 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1, 7,13,19,25, 2, 8,14,20,26, 3, 9,15,21,27)( 4,16,28,11,22, 5,17,29,12,23, 6,18,30,10,24)$ |
15D-2 | $15^{2}$ | $4$ | $15$ | $28$ | $( 1,21, 9,26,14, 2,19, 7,27,15, 3,20, 8,25,13)( 4,29,24,17,10, 5,30,22,18,11, 6,28,23,16,12)$ |
Malle's constant $a(G)$: $1/12$
Character table
1A | 2A | 2B | 2C | 3A | 5A1 | 5A2 | 5B1 | 5B2 | 5C1 | 5C2 | 5D1 | 5D2 | 6A | 10A1 | 10A3 | 10B1 | 10B3 | 15A1 | 15A2 | 15B1 | 15B2 | 15C1 | 15C-1 | 15C2 | 15C-2 | 15D1 | 15D-1 | 15D2 | 15D-2 | ||
Size | 1 | 15 | 15 | 25 | 2 | 2 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 50 | 30 | 30 | 30 | 30 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 3A | 5A2 | 5A1 | 5B2 | 5B1 | 5C2 | 5C1 | 5D2 | 5D1 | 3A | 5B1 | 5B2 | 5A1 | 5A2 | 15A2 | 15A1 | 15B2 | 15B1 | 15C2 | 15C-2 | 15C1 | 15C-1 | 15D2 | 15D-2 | 15D1 | 15D-1 | |
3 P | 1A | 2A | 2B | 2C | 1A | 5A2 | 5A1 | 5B2 | 5B1 | 5C2 | 5C1 | 5D2 | 5D1 | 2C | 10A3 | 10A1 | 10B3 | 10B1 | 5A1 | 5A2 | 5B1 | 5B2 | 5C1 | 5C1 | 5C2 | 5C2 | 5D1 | 5D1 | 5D2 | 5D2 | |
5 P | 1A | 2A | 2B | 2C | 3A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 6A | 2A | 2A | 2B | 2B | 3A | 3A | 3A | 3A | 3A | 3A | 3A | 3A | 3A | 3A | 3A | 3A | |
Type | |||||||||||||||||||||||||||||||
300.40.1a | R | ||||||||||||||||||||||||||||||
300.40.1b | R | ||||||||||||||||||||||||||||||
300.40.1c | R | ||||||||||||||||||||||||||||||
300.40.1d | R | ||||||||||||||||||||||||||||||
300.40.2a | R | ||||||||||||||||||||||||||||||
300.40.2b | R | ||||||||||||||||||||||||||||||
300.40.2c1 | R | ||||||||||||||||||||||||||||||
300.40.2c2 | R | ||||||||||||||||||||||||||||||
300.40.2d1 | R | ||||||||||||||||||||||||||||||
300.40.2d2 | R | ||||||||||||||||||||||||||||||
300.40.2e1 | R | ||||||||||||||||||||||||||||||
300.40.2e2 | R | ||||||||||||||||||||||||||||||
300.40.2f1 | R | ||||||||||||||||||||||||||||||
300.40.2f2 | R | ||||||||||||||||||||||||||||||
300.40.4a1 | R | ||||||||||||||||||||||||||||||
300.40.4a2 | R | ||||||||||||||||||||||||||||||
300.40.4b1 | R | ||||||||||||||||||||||||||||||
300.40.4b2 | R | ||||||||||||||||||||||||||||||
300.40.4c1 | R | ||||||||||||||||||||||||||||||
300.40.4c2 | R | ||||||||||||||||||||||||||||||
300.40.4d1 | R | ||||||||||||||||||||||||||||||
300.40.4d2 | R | ||||||||||||||||||||||||||||||
300.40.4e1 | C | ||||||||||||||||||||||||||||||
300.40.4e2 | C | ||||||||||||||||||||||||||||||
300.40.4e3 | C | ||||||||||||||||||||||||||||||
300.40.4e4 | C | ||||||||||||||||||||||||||||||
300.40.4f1 | C | ||||||||||||||||||||||||||||||
300.40.4f2 | C | ||||||||||||||||||||||||||||||
300.40.4f3 | C | ||||||||||||||||||||||||||||||
300.40.4f4 | C |
Regular extensions
Data not computed