Show commands: Magma
Group invariants
| Abstract group: | $D_5^3.S_3$ |
| |
| Order: | $6000=2^{4} \cdot 3 \cdot 5^{3}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $30$ |
| |
| Transitive number $t$: | $624$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,28,8,15,13,4,20,21,25,10,2,27,7,16,14,3,19,22,26,9)(11,17,29,23)(12,18,30,24)$, $(1,11,9)(2,12,10)(3,25,17)(4,26,18)(5,15,7)(6,16,8)(13,29,21)(14,30,22)(19,23,27)(20,24,28)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $6$: $S_3$ $12$: $C_3 : C_4$ $24$: $S_4$ $48$: 12T27 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 5: None
Degree 6: $S_4$
Degree 10: None
Degree 15: 15T58
Low degree siblings
15T58, 20T360, 30T591, 30T604, 30T607, 30T616, 40T5196Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{14},1^{2}$ | $15$ | $2$ | $14$ | $( 1, 2)( 3, 4)( 5,29)( 6,30)( 7, 8)( 9,10)(11,23)(12,24)(13,14)(15,16)(19,20)(21,22)(25,26)(27,28)$ |
| 2B | $2^{10},1^{10}$ | $75$ | $2$ | $10$ | $( 1, 2)( 3,28)( 4,27)( 7,26)( 8,25)( 9,22)(10,21)(13,20)(14,19)(15,16)$ |
| 2C | $2^{12},1^{6}$ | $125$ | $2$ | $12$ | $( 1, 7)( 2, 8)( 5,23)( 6,24)( 9,27)(10,28)(11,17)(12,18)(13,25)(14,26)(15,21)(16,22)$ |
| 3A | $3^{10}$ | $200$ | $3$ | $20$ | $( 1,22,12)( 2,21,11)( 3,29,20)( 4,30,19)( 5,26,27)( 6,25,28)( 7,16,18)( 8,15,17)( 9,23,14)(10,24,13)$ |
| 4A1 | $4^{7},1^{2}$ | $150$ | $4$ | $21$ | $( 1,19,25, 7)( 2,20,26, 8)( 3,24, 4,23)( 5, 9, 6,10)(11,27,12,28)(15,18,16,17)(21,30,22,29)$ |
| 4A-1 | $4^{7},1^{2}$ | $150$ | $4$ | $21$ | $( 1, 7,25,19)( 2, 8,26,20)( 3,23, 4,24)( 5,10, 6, 9)(11,28,12,27)(15,17,16,18)(21,29,22,30)$ |
| 4B1 | $4^{6},2^{3}$ | $750$ | $4$ | $21$ | $( 1, 3,19,27)( 2, 4,20,28)( 5,12,23,18)( 6,11,24,17)( 7,21,13, 9)( 8,22,14,10)(15,25)(16,26)(29,30)$ |
| 4B-1 | $4^{6},2^{3}$ | $750$ | $4$ | $21$ | $( 1,27,19, 3)( 2,28,20, 4)( 5,18,23,12)( 6,17,24,11)( 7, 9,13,21)( 8,10,14,22)(15,25)(16,26)(29,30)$ |
| 5A | $5^{2},1^{20}$ | $12$ | $5$ | $8$ | $( 1,13,25, 7,19)( 2,14,26, 8,20)$ |
| 5B1 | $5^{4},1^{10}$ | $12$ | $5$ | $16$ | $( 3,15,27, 9,21)( 4,16,28,10,22)( 5,29,23,17,11)( 6,30,24,18,12)$ |
| 5B2 | $5^{4},1^{10}$ | $12$ | $5$ | $16$ | $( 3,27,21,15, 9)( 4,28,22,16,10)( 5,23,11,29,17)( 6,24,12,30,18)$ |
| 5C | $5^{6}$ | $16$ | $5$ | $24$ | $( 1,13,25, 7,19)( 2,14,26, 8,20)( 3,21, 9,27,15)( 4,22,10,28,16)( 5,17,29,11,23)( 6,18,30,12,24)$ |
| 5D | $5^{4},1^{10}$ | $24$ | $5$ | $16$ | $( 1, 7,13,19,25)( 2, 8,14,20,26)( 5,29,23,17,11)( 6,30,24,18,12)$ |
| 5E | $5^{6}$ | $48$ | $5$ | $24$ | $( 1,13,25, 7,19)( 2,14,26, 8,20)( 3, 9,15,21,27)( 4,10,16,22,28)( 5,29,23,17,11)( 6,30,24,18,12)$ |
| 6A | $6^{4},3^{2}$ | $1000$ | $6$ | $24$ | $( 1,18,22, 7,12,16)( 2,17,21, 8,11,15)( 3,20,29)( 4,19,30)( 5, 9,26,23,27,14)( 6,10,25,24,28,13)$ |
| 10A1 | $10,2^{9},1^{2}$ | $60$ | $10$ | $18$ | $( 1, 8,13,20,25, 2, 7,14,19,26)( 3, 4)( 5,29)( 6,30)( 9,10)(11,23)(12,24)(15,16)(21,22)(27,28)$ |
| 10A3 | $10,2^{9},1^{2}$ | $60$ | $10$ | $18$ | $( 1, 8,13,20,25, 2, 7,14,19,26)( 3,21)( 4,22)( 5, 6)( 9,15)(10,16)(11,12)(17,18)(23,24)(29,30)$ |
| 10B1 | $10^{2},2^{4},1^{2}$ | $60$ | $10$ | $22$ | $( 1,25)( 2,26)( 3,10,15,22,27, 4, 9,16,21,28)( 5,18,29,12,23, 6,17,30,11,24)( 7,19)( 8,20)$ |
| 10B3 | $10^{2},2^{4},1^{2}$ | $60$ | $10$ | $22$ | $( 1,25)( 2,26)( 3,22, 9,28,15, 4,21,10,27,16)( 5,12,17,24,29, 6,11,18,23,30)( 7,19)( 8,20)$ |
| 10C | $10^{2},2^{4},1^{2}$ | $120$ | $10$ | $22$ | $( 1,20, 7,26,13, 2,19, 8,25,14)( 3,27)( 4,28)( 5,18,29,12,23, 6,17,30,11,24)( 9,21)(10,22)$ |
| 10D | $5^{2},2^{10}$ | $300$ | $10$ | $18$ | $( 1, 2)( 3,28)( 4,27)( 5,17,29,11,23)( 6,18,30,12,24)( 7,26)( 8,25)( 9,22)(10,21)(13,20)(14,19)(15,16)$ |
| 15A1 | $15^{2}$ | $400$ | $15$ | $28$ | $( 1,30,28,13,12,16,25,24, 4, 7, 6,22,19,18,10)( 2,29,27,14,11,15,26,23, 3, 8, 5,21,20,17, 9)$ |
| 15A-1 | $15^{2}$ | $400$ | $15$ | $28$ | $( 1,10,18,19,22, 6, 7, 4,24,25,16,12,13,28,30)( 2, 9,17,20,21, 5, 8, 3,23,26,15,11,14,27,29)$ |
| 20A1 | $20,4^{2},1^{2}$ | $300$ | $20$ | $25$ | $( 1,19,25, 7)( 2,20,26, 8)( 3,30,10,11,15,24,22, 5,27,18, 4,29, 9,12,16,23,21, 6,28,17)$ |
| 20A-1 | $20,4^{2},1^{2}$ | $300$ | $20$ | $25$ | $( 1, 7,25,19)( 2, 8,26,20)( 3,17,28, 6,21,23,16,12, 9,29, 4,18,27, 5,22,24,15,11,10,30)$ |
| 20A3 | $20,4^{2},1^{2}$ | $300$ | $20$ | $25$ | $( 1, 7,25,19)( 2, 8,26,20)( 3,11,22,18, 9,23,28,30,15, 5, 4,12,21,17,10,24,27,29,16, 6)$ |
| 20A-3 | $20,4^{2},1^{2}$ | $300$ | $20$ | $25$ | $( 1,19,25, 7)( 2,20,26, 8)( 3, 6,16,29,27,24,10,17,21,12, 4, 5,15,30,28,23, 9,18,22,11)$ |
Malle's constant $a(G)$: $1/8$
Character table
| 1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 5A | 5B1 | 5B2 | 5C | 5D | 5E | 6A | 10A1 | 10A3 | 10B1 | 10B3 | 10C | 10D | 15A1 | 15A-1 | 20A1 | 20A-1 | 20A3 | 20A-3 | ||
| Size | 1 | 15 | 75 | 125 | 200 | 150 | 150 | 750 | 750 | 12 | 12 | 12 | 16 | 24 | 48 | 1000 | 60 | 60 | 60 | 60 | 120 | 300 | 400 | 400 | 300 | 300 | 300 | 300 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 2A | 2A | 2C | 2C | 5A | 5B2 | 5B1 | 5C | 5D | 5E | 3A | 5A | 5A | 5B1 | 5B2 | 5D | 5A | 15A1 | 15A-1 | 10B1 | 10B1 | 10B3 | 10B3 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 5A | 5B2 | 5B1 | 5C | 5D | 5E | 2C | 10A3 | 10A1 | 10B3 | 10B1 | 10C | 10D | 5C | 5C | 20A3 | 20A-3 | 20A1 | 20A-1 | |
| 5 P | 1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 1A | 1A | 1A | 1A | 1A | 1A | 6A | 2A | 2A | 2A | 2A | 2A | 2B | 3A | 3A | 4A1 | 4A-1 | 4A-1 | 4A1 | |
| Type | |||||||||||||||||||||||||||||
| 6000.bm.1a | R | ||||||||||||||||||||||||||||
| 6000.bm.1b | R | ||||||||||||||||||||||||||||
| 6000.bm.1c1 | C | ||||||||||||||||||||||||||||
| 6000.bm.1c2 | C | ||||||||||||||||||||||||||||
| 6000.bm.2a | R | ||||||||||||||||||||||||||||
| 6000.bm.2b | S | ||||||||||||||||||||||||||||
| 6000.bm.3a | R | ||||||||||||||||||||||||||||
| 6000.bm.3b | R | ||||||||||||||||||||||||||||
| 6000.bm.3c1 | C | ||||||||||||||||||||||||||||
| 6000.bm.3c2 | C | ||||||||||||||||||||||||||||
| 6000.bm.12a | R | ||||||||||||||||||||||||||||
| 6000.bm.12b | R | ||||||||||||||||||||||||||||
| 6000.bm.12c1 | R | ||||||||||||||||||||||||||||
| 6000.bm.12c2 | R | ||||||||||||||||||||||||||||
| 6000.bm.12d1 | R | ||||||||||||||||||||||||||||
| 6000.bm.12d2 | R | ||||||||||||||||||||||||||||
| 6000.bm.12e1 | R | ||||||||||||||||||||||||||||
| 6000.bm.12e2 | R | ||||||||||||||||||||||||||||
| 6000.bm.12f1 | C | ||||||||||||||||||||||||||||
| 6000.bm.12f2 | C | ||||||||||||||||||||||||||||
| 6000.bm.12f3 | C | ||||||||||||||||||||||||||||
| 6000.bm.12f4 | C | ||||||||||||||||||||||||||||
| 6000.bm.16a | R | ||||||||||||||||||||||||||||
| 6000.bm.16b1 | C | ||||||||||||||||||||||||||||
| 6000.bm.16b2 | C | ||||||||||||||||||||||||||||
| 6000.bm.24a | R | ||||||||||||||||||||||||||||
| 6000.bm.24b | R | ||||||||||||||||||||||||||||
| 6000.bm.48a | R |
Regular extensions
Data not computed