Show commands: Magma
Group invariants
Abstract group: | $D_5^3.S_3$ |
| |
Order: | $6000=2^{4} \cdot 3 \cdot 5^{3}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $30$ |
| |
Transitive number $t$: | $604$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,11,21)(2,12,22)(3,13,23)(4,14,24)(5,15,25)(6,16,26)(7,17,27)(8,18,28)(9,19,29)(10,20,30)$, $(1,16,7,4)(2,15,8,3)(5,30,17,24)(6,29,18,23)(9,20)(10,19)(11,12)(13,22,25,28)(14,21,26,27)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $6$: $S_3$ $12$: $C_3 : C_4$ $24$: $S_4$ $48$: 12T27 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 5: None
Degree 6: $S_3$
Degree 10: None
Degree 15: 15T58
Low degree siblings
15T58, 20T360, 30T591, 30T607, 30T616, 30T624, 40T5196Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{4},1^{22}$ | $15$ | $2$ | $4$ | $( 9,27)(10,28)(15,21)(16,22)$ |
2B | $2^{8},1^{14}$ | $75$ | $2$ | $8$ | $( 1, 7)( 2, 8)( 5,17)( 6,18)(13,25)(14,26)(23,29)(24,30)$ |
2C | $2^{12},1^{6}$ | $125$ | $2$ | $12$ | $( 3, 9)( 4,10)( 5,23)( 6,24)( 7,25)( 8,26)(11,17)(12,18)(13,19)(14,20)(15,27)(16,28)$ |
3A | $3^{10}$ | $200$ | $3$ | $20$ | $( 1,21,29)( 2,22,30)( 3,17,19)( 4,18,20)( 5, 7,15)( 6, 8,16)( 9,11,13)(10,12,14)(23,25,27)(24,26,28)$ |
4A1 | $4^{2},2^{11}$ | $150$ | $4$ | $17$ | $( 1,28)( 2,27)( 3,20)( 4,19)( 5,18,11,30)( 6,17,12,29)( 7,10)( 8, 9)(13,22)(14,21)(15,26)(16,25)(23,24)$ |
4A-1 | $4^{2},2^{11}$ | $150$ | $4$ | $17$ | $( 1,28)( 2,27)( 3,20)( 4,19)( 5,30,11,18)( 6,29,12,17)( 7,10)( 8, 9)(13,22)(14,21)(15,26)(16,25)(23,24)$ |
4B1 | $4^{6},2^{3}$ | $750$ | $4$ | $21$ | $( 1,30, 7,12)( 2,29, 8,11)( 3,16, 9,28)( 4,15,10,27)( 5,20)( 6,19)(13,24,25,18)(14,23,26,17)(21,22)$ |
4B-1 | $4^{6},2^{3}$ | $750$ | $4$ | $21$ | $( 1,12, 7,30)( 2,11, 8,29)( 3,28, 9,16)( 4,27,10,15)( 5,20)( 6,19)(13,18,25,24)(14,17,26,23)(21,22)$ |
5A | $5^{2},1^{20}$ | $12$ | $5$ | $8$ | $( 5,17,29,11,23)( 6,18,30,12,24)$ |
5B1 | $5^{4},1^{10}$ | $12$ | $5$ | $16$ | $( 1,19, 7,25,13)( 2,20, 8,26,14)( 3, 9,15,21,27)( 4,10,16,22,28)$ |
5B2 | $5^{4},1^{10}$ | $12$ | $5$ | $16$ | $( 1, 7,13,19,25)( 2, 8,14,20,26)( 3,15,27, 9,21)( 4,16,28,10,22)$ |
5C | $5^{6}$ | $16$ | $5$ | $24$ | $( 1,13,25, 7,19)( 2,14,26, 8,20)( 3,21, 9,27,15)( 4,22,10,28,16)( 5,17,29,11,23)( 6,18,30,12,24)$ |
5D | $5^{4},1^{10}$ | $24$ | $5$ | $16$ | $( 3, 9,15,21,27)( 4,10,16,22,28)( 5,11,17,23,29)( 6,12,18,24,30)$ |
5E | $5^{6}$ | $48$ | $5$ | $24$ | $( 1,25,19,13, 7)( 2,26,20,14, 8)( 3, 9,15,21,27)( 4,10,16,22,28)( 5,17,29,11,23)( 6,18,30,12,24)$ |
6A | $6^{4},3^{2}$ | $1000$ | $6$ | $24$ | $( 1,29,21)( 2,30,22)( 3,13,17, 9,19,11)( 4,14,18,10,20,12)( 5,27, 7,23,15,25)( 6,28, 8,24,16,26)$ |
10A1 | $5^{2},2^{4},1^{12}$ | $60$ | $10$ | $12$ | $( 5,11,17,23,29)( 6,12,18,24,30)( 9,27)(10,28)(15,21)(16,22)$ |
10A3 | $5^{2},2^{4},1^{12}$ | $60$ | $10$ | $12$ | $( 1,13)( 2,14)( 5,11,17,23,29)( 6,12,18,24,30)(19,25)(20,26)$ |
10B1 | $5^{4},2^{4},1^{2}$ | $60$ | $10$ | $20$ | $( 1,25,19,13, 7)( 2,26,20,14, 8)( 3,21, 9,27,15)( 4,22,10,28,16)( 5,11)( 6,12)(17,29)(18,30)$ |
10B3 | $5^{4},2^{4},1^{2}$ | $60$ | $10$ | $20$ | $( 1,13,25, 7,19)( 2,14,26, 8,20)( 3,27,21,15, 9)( 4,28,22,16,10)( 5,11)( 6,12)(17,29)(18,30)$ |
10C | $5^{4},2^{4},1^{2}$ | $120$ | $10$ | $20$ | $( 1, 7)( 2, 8)( 3,21, 9,27,15)( 4,22,10,28,16)( 5,23,11,29,17)( 6,24,12,30,18)(13,25)(14,26)$ |
10D | $5^{2},2^{8},1^{4}$ | $300$ | $10$ | $16$ | $( 1, 7)( 2, 8)( 3,21, 9,27,15)( 4,22,10,28,16)( 5,17)( 6,18)(13,25)(14,26)(23,29)(24,30)$ |
15A1 | $15^{2}$ | $400$ | $15$ | $28$ | $( 1,17,15,13,29, 3,25,11,21, 7,23, 9,19, 5,27)( 2,18,16,14,30, 4,26,12,22, 8,24,10,20, 6,28)$ |
15A-1 | $15^{2}$ | $400$ | $15$ | $28$ | $( 1,27, 5,19, 9,23, 7,21,11,25, 3,29,13,15,17)( 2,28, 6,20,10,24, 8,22,12,26, 4,30,14,16,18)$ |
20A1 | $10^{2},4^{2},2$ | $300$ | $20$ | $25$ | $( 1,22,25,10,19,28,13,16, 7, 4)( 2,21,26, 9,20,27,14,15, 8, 3)( 5,18,11,30)( 6,17,12,29)(23,24)$ |
20A-1 | $10^{2},4^{2},2$ | $300$ | $20$ | $25$ | $( 1, 4, 7,16,13,28,19,10,25,22)( 2, 3, 8,15,14,27,20, 9,26,21)( 5,30,11,18)( 6,29,12,17)(23,24)$ |
20A3 | $10^{2},4^{2},2$ | $300$ | $20$ | $25$ | $( 1,10,13, 4,25,28, 7,22,19,16)( 2, 9,14, 3,26,27, 8,21,20,15)( 5,30,11,18)( 6,29,12,17)(23,24)$ |
20A-3 | $10^{2},4^{2},2$ | $300$ | $20$ | $25$ | $( 1,16,19,22, 7,28,25, 4,13,10)( 2,15,20,21, 8,27,26, 3,14, 9)( 5,18,11,30)( 6,17,12,29)(23,24)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 5A | 5B1 | 5B2 | 5C | 5D | 5E | 6A | 10A1 | 10A3 | 10B1 | 10B3 | 10C | 10D | 15A1 | 15A-1 | 20A1 | 20A-1 | 20A3 | 20A-3 | ||
Size | 1 | 15 | 75 | 125 | 200 | 150 | 150 | 750 | 750 | 12 | 12 | 12 | 16 | 24 | 48 | 1000 | 60 | 60 | 60 | 60 | 120 | 300 | 400 | 400 | 300 | 300 | 300 | 300 | |
2 P | 1A | 1A | 1A | 1A | 3A | 2A | 2A | 2C | 2C | 5A | 5B2 | 5B1 | 5C | 5D | 5E | 3A | 5A | 5A | 5B1 | 5B2 | 5D | 5A | 15A1 | 15A-1 | 10B1 | 10B1 | 10B3 | 10B3 | |
3 P | 1A | 2A | 2B | 2C | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 5A | 5B2 | 5B1 | 5C | 5D | 5E | 2C | 10A3 | 10A1 | 10B3 | 10B1 | 10C | 10D | 5C | 5C | 20A3 | 20A-3 | 20A1 | 20A-1 | |
5 P | 1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 1A | 1A | 1A | 1A | 1A | 1A | 6A | 2A | 2A | 2A | 2A | 2A | 2B | 3A | 3A | 4A1 | 4A-1 | 4A-1 | 4A1 | |
Type | |||||||||||||||||||||||||||||
6000.bm.1a | R | ||||||||||||||||||||||||||||
6000.bm.1b | R | ||||||||||||||||||||||||||||
6000.bm.1c1 | C | ||||||||||||||||||||||||||||
6000.bm.1c2 | C | ||||||||||||||||||||||||||||
6000.bm.2a | R | ||||||||||||||||||||||||||||
6000.bm.2b | S | ||||||||||||||||||||||||||||
6000.bm.3a | R | ||||||||||||||||||||||||||||
6000.bm.3b | R | ||||||||||||||||||||||||||||
6000.bm.3c1 | C | ||||||||||||||||||||||||||||
6000.bm.3c2 | C | ||||||||||||||||||||||||||||
6000.bm.12a | R | ||||||||||||||||||||||||||||
6000.bm.12b | R | ||||||||||||||||||||||||||||
6000.bm.12c1 | R | ||||||||||||||||||||||||||||
6000.bm.12c2 | R | ||||||||||||||||||||||||||||
6000.bm.12d1 | R | ||||||||||||||||||||||||||||
6000.bm.12d2 | R | ||||||||||||||||||||||||||||
6000.bm.12e1 | R | ||||||||||||||||||||||||||||
6000.bm.12e2 | R | ||||||||||||||||||||||||||||
6000.bm.12f1 | C | ||||||||||||||||||||||||||||
6000.bm.12f2 | C | ||||||||||||||||||||||||||||
6000.bm.12f3 | C | ||||||||||||||||||||||||||||
6000.bm.12f4 | C | ||||||||||||||||||||||||||||
6000.bm.16a | R | ||||||||||||||||||||||||||||
6000.bm.16b1 | C | ||||||||||||||||||||||||||||
6000.bm.16b2 | C | ||||||||||||||||||||||||||||
6000.bm.24a | R | ||||||||||||||||||||||||||||
6000.bm.24b | R | ||||||||||||||||||||||||||||
6000.bm.48a | R |
Regular extensions
Data not computed