Show commands: Magma
Group invariants
| Abstract group: | $D_5\times C_{15}$ |
| |
| Order: | $150=2 \cdot 3 \cdot 5^{2}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $30$ |
| |
| Transitive number $t$: | $39$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $15$ |
| |
| Generators: | $(1,23,13,5,25,16,8,30,20,12,3,22,15,4,27,18,7,29,19,11,2,24,14,6,26,17,9,28,21,10)$, $(1,15,26,8,19)(2,13,27,9,20)(3,14,25,7,21)(4,23,11,30,17)(5,24,12,28,18)(6,22,10,29,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $5$: $C_5$ $6$: $C_6$ $10$: $D_{5}$, $C_{10}$ $15$: $C_{15}$ $30$: $D_5\times C_3$, $C_{30}$ $50$: $D_5\times C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 5: None
Degree 6: $C_6$
Degree 10: $D_5\times C_5$
Degree 15: None
Low degree siblings
30T39Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
60 x 60 character table
Regular extensions
Data not computed