Show commands: Magma
Group invariants
| Abstract group: | $C_5\times S_4$ |
| |
| Order: | $120=2^{3} \cdot 3 \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $30$ |
| |
| Transitive number $t$: | $33$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $10$ |
| |
| Generators: | $(1,29,6,23,9,28,3,21,8,26)(2,30,5,24,10,27,4,22,7,25)(11,14,15,17,19)(12,13,16,18,20)$, $(1,27,13)(2,28,14)(3,30,16)(4,29,15)(5,21,17)(6,22,18)(7,23,19)(8,24,20)(9,25,12)(10,26,11)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5$: $C_5$ $6$: $S_3$ $10$: $C_{10}$ $24$: $S_4$ $30$: $S_3 \times C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 5: $C_5$
Degree 6: $S_4$
Degree 10: None
Degree 15: $S_3 \times C_5$
Low degree siblings
20T34, 30T34, 40T64Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{10},1^{10}$ | $3$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)$ |
| 2B | $2^{10},1^{10}$ | $6$ | $2$ | $10$ | $(11,25)(12,26)(13,28)(14,27)(15,30)(16,29)(17,22)(18,21)(19,24)(20,23)$ |
| 3A | $3^{10}$ | $8$ | $3$ | $20$ | $( 1,13,28)( 2,14,27)( 3,16,29)( 4,15,30)( 5,17,22)( 6,18,21)( 7,19,24)( 8,20,23)( 9,12,26)(10,11,25)$ |
| 4A | $4^{5},2^{5}$ | $6$ | $4$ | $20$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,17, 6,18)( 7,19, 8,20)( 9,12,10,11)(21,22)(23,24)(25,26)(27,28)(29,30)$ |
| 5A1 | $5^{6}$ | $1$ | $5$ | $24$ | $( 1, 3, 6, 8, 9)( 2, 4, 5, 7,10)(11,14,15,17,19)(12,13,16,18,20)(21,23,26,28,29)(22,24,25,27,30)$ |
| 5A-1 | $5^{6}$ | $1$ | $5$ | $24$ | $( 1, 9, 8, 6, 3)( 2,10, 7, 5, 4)(11,19,17,15,14)(12,20,18,16,13)(21,29,28,26,23)(22,30,27,25,24)$ |
| 5A2 | $5^{6}$ | $1$ | $5$ | $24$ | $( 1, 6, 9, 3, 8)( 2, 5,10, 4, 7)(11,15,19,14,17)(12,16,20,13,18)(21,26,29,23,28)(22,25,30,24,27)$ |
| 5A-2 | $5^{6}$ | $1$ | $5$ | $24$ | $( 1, 8, 3, 9, 6)( 2, 7, 4,10, 5)(11,17,14,19,15)(12,18,13,20,16)(21,28,23,29,26)(22,27,24,30,25)$ |
| 10A1 | $10^{2},5^{2}$ | $3$ | $10$ | $26$ | $( 1, 7, 3,10, 6, 2, 8, 4, 9, 5)(11,18,14,20,15,12,17,13,19,16)(21,28,23,29,26)(22,27,24,30,25)$ |
| 10A-1 | $10^{2},5^{2}$ | $3$ | $10$ | $26$ | $( 1, 5, 9, 4, 8, 2, 6,10, 3, 7)(11,16,19,13,17,12,15,20,14,18)(21,26,29,23,28)(22,25,30,24,27)$ |
| 10A3 | $10^{2},5^{2}$ | $3$ | $10$ | $26$ | $( 1,10, 8, 5, 3, 2, 9, 7, 6, 4)(11,20,17,16,14,12,19,18,15,13)(21,29,28,26,23)(22,30,27,25,24)$ |
| 10A-3 | $10^{2},5^{2}$ | $3$ | $10$ | $26$ | $( 1, 4, 6, 7, 9, 2, 3, 5, 8,10)(11,13,15,18,19,12,14,16,17,20)(21,23,26,28,29)(22,24,25,27,30)$ |
| 10B1 | $10^{2},5^{2}$ | $6$ | $10$ | $26$ | $( 1, 8, 3, 9, 6)( 2, 7, 4,10, 5)(11,22,14,24,15,25,17,27,19,30)(12,21,13,23,16,26,18,28,20,29)$ |
| 10B-1 | $10^{2},5^{2}$ | $6$ | $10$ | $26$ | $( 1, 6, 9, 3, 8)( 2, 5,10, 4, 7)(11,30,19,27,17,25,15,24,14,22)(12,29,20,28,18,26,16,23,13,21)$ |
| 10B3 | $10^{2},5^{2}$ | $6$ | $10$ | $26$ | $( 1, 9, 8, 6, 3)( 2,10, 7, 5, 4)(11,24,17,30,14,25,19,22,15,27)(12,23,18,29,13,26,20,21,16,28)$ |
| 10B-3 | $10^{2},5^{2}$ | $6$ | $10$ | $26$ | $( 1, 3, 6, 8, 9)( 2, 4, 5, 7,10)(11,27,15,22,19,25,14,30,17,24)(12,28,16,21,20,26,13,29,18,23)$ |
| 15A1 | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,23,16, 9,21,13, 8,29,12, 6,28,20, 3,26,18)( 2,24,15,10,22,14, 7,30,11, 5,27,19, 4,25,17)$ |
| 15A-1 | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,21,12, 3,23,13, 6,26,16, 8,28,18, 9,29,20)( 2,22,11, 4,24,14, 5,25,15, 7,27,17,10,30,19)$ |
| 15A2 | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,16,21, 8,12,28, 3,18,23, 9,13,29, 6,20,26)( 2,15,22, 7,11,27, 4,17,24,10,14,30, 5,19,25)$ |
| 15A-2 | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,26,20, 6,29,13, 9,23,18, 3,28,12, 8,21,16)( 2,25,19, 5,30,14,10,24,17, 4,27,11, 7,22,15)$ |
| 20A1 | $20,10$ | $6$ | $20$ | $28$ | $( 1,12, 7,17, 3,13,10,19, 6,16, 2,11, 8,18, 4,14, 9,20, 5,15)(21,30,28,25,23,22,29,27,26,24)$ |
| 20A-1 | $20,10$ | $6$ | $20$ | $28$ | $( 1,15, 5,20, 9,14, 4,18, 8,11, 2,16, 6,19,10,13, 3,17, 7,12)(21,24,26,27,29,22,23,25,28,30)$ |
| 20A3 | $20,10$ | $6$ | $20$ | $28$ | $( 1,18,10,15, 8,13, 5,11, 3,20, 2,17, 9,16, 7,14, 6,12, 4,19)(21,25,29,24,28,22,26,30,23,27)$ |
| 20A-3 | $20,10$ | $6$ | $20$ | $28$ | $( 1,19, 4,12, 6,14, 7,16, 9,17, 2,20, 3,11, 5,13, 8,15,10,18)(21,27,23,30,26,22,28,24,29,25)$ |
Malle's constant $a(G)$: $1/10$
Character table
| 1A | 2A | 2B | 3A | 4A | 5A1 | 5A-1 | 5A2 | 5A-2 | 10A1 | 10A-1 | 10A3 | 10A-3 | 10B1 | 10B-1 | 10B3 | 10B-3 | 15A1 | 15A-1 | 15A2 | 15A-2 | 20A1 | 20A-1 | 20A3 | 20A-3 | ||
| Size | 1 | 3 | 6 | 8 | 6 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | |
| 2 P | 1A | 1A | 1A | 3A | 2A | 5A2 | 5A-2 | 5A-1 | 5A1 | 5A1 | 5A-1 | 5A-2 | 5A2 | 5A1 | 5A-1 | 5A-2 | 5A2 | 15A2 | 15A-2 | 15A-1 | 15A1 | 10A1 | 10A-1 | 10A3 | 10A-3 | |
| 3 P | 1A | 2A | 2B | 1A | 4A | 5A-2 | 5A2 | 5A1 | 5A-1 | 10A3 | 10A-3 | 10A-1 | 10A1 | 10B3 | 10B-3 | 10B-1 | 10B1 | 5A-1 | 5A1 | 5A-2 | 5A2 | 20A3 | 20A-3 | 20A-1 | 20A1 | |
| 5 P | 1A | 2A | 2B | 3A | 4A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2B | 2B | 2B | 2B | 3A | 3A | 3A | 3A | 4A | 4A | 4A | 4A | |
| Type | ||||||||||||||||||||||||||
| 120.37.1a | R | |||||||||||||||||||||||||
| 120.37.1b | R | |||||||||||||||||||||||||
| 120.37.1c1 | C | |||||||||||||||||||||||||
| 120.37.1c2 | C | |||||||||||||||||||||||||
| 120.37.1c3 | C | |||||||||||||||||||||||||
| 120.37.1c4 | C | |||||||||||||||||||||||||
| 120.37.1d1 | C | |||||||||||||||||||||||||
| 120.37.1d2 | C | |||||||||||||||||||||||||
| 120.37.1d3 | C | |||||||||||||||||||||||||
| 120.37.1d4 | C | |||||||||||||||||||||||||
| 120.37.2a | R | |||||||||||||||||||||||||
| 120.37.2b1 | C | |||||||||||||||||||||||||
| 120.37.2b2 | C | |||||||||||||||||||||||||
| 120.37.2b3 | C | |||||||||||||||||||||||||
| 120.37.2b4 | C | |||||||||||||||||||||||||
| 120.37.3a | R | |||||||||||||||||||||||||
| 120.37.3b | R | |||||||||||||||||||||||||
| 120.37.3c1 | C | |||||||||||||||||||||||||
| 120.37.3c2 | C | |||||||||||||||||||||||||
| 120.37.3c3 | C | |||||||||||||||||||||||||
| 120.37.3c4 | C | |||||||||||||||||||||||||
| 120.37.3d1 | C | |||||||||||||||||||||||||
| 120.37.3d2 | C | |||||||||||||||||||||||||
| 120.37.3d3 | C | |||||||||||||||||||||||||
| 120.37.3d4 | C |
Regular extensions
Data not computed