Show commands:
Magma
magma: G := TransitiveGroup(30, 33);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $33$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $C_5\times S_4$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $10$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,29,6,23,9,28,3,21,8,26)(2,30,5,24,10,27,4,22,7,25)(11,14,15,17,19)(12,13,16,18,20), (1,27,13)(2,28,14)(3,30,16)(4,29,15)(5,21,17)(6,22,18)(7,23,19)(8,24,20)(9,25,12)(10,26,11) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $5$: $C_5$ $6$: $S_3$ $10$: $C_{10}$ $24$: $S_4$ $30$: $S_3 \times C_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 5: $C_5$
Degree 6: $S_4$
Degree 10: None
Degree 15: $S_3 \times C_5$
Low degree siblings
20T34, 30T34, 40T64Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10},1^{10}$ | $3$ | $2$ | $10$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(21,22)(23,24)(25,26)(27,28)(29,30)$ |
2B | $2^{10},1^{10}$ | $6$ | $2$ | $10$ | $(11,25)(12,26)(13,28)(14,27)(15,30)(16,29)(17,22)(18,21)(19,24)(20,23)$ |
3A | $3^{10}$ | $8$ | $3$ | $20$ | $( 1,28,13)( 2,27,14)( 3,29,16)( 4,30,15)( 5,22,17)( 6,21,18)( 7,24,19)( 8,23,20)( 9,26,12)(10,25,11)$ |
4A | $4^{5},2^{5}$ | $6$ | $4$ | $20$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,26,12,25)(13,27,14,28)(15,29,16,30)(17,21,18,22)(19,23,20,24)$ |
5A1 | $5^{6}$ | $1$ | $5$ | $24$ | $( 1, 8, 3, 9, 6)( 2, 7, 4,10, 5)(11,17,14,19,15)(12,18,13,20,16)(21,28,23,29,26)(22,27,24,30,25)$ |
5A-1 | $5^{6}$ | $1$ | $5$ | $24$ | $( 1, 6, 9, 3, 8)( 2, 5,10, 4, 7)(11,15,19,14,17)(12,16,20,13,18)(21,26,29,23,28)(22,25,30,24,27)$ |
5A2 | $5^{6}$ | $1$ | $5$ | $24$ | $( 1, 3, 6, 8, 9)( 2, 4, 5, 7,10)(11,14,15,17,19)(12,13,16,18,20)(21,23,26,28,29)(22,24,25,27,30)$ |
5A-2 | $5^{6}$ | $1$ | $5$ | $24$ | $( 1, 9, 8, 6, 3)( 2,10, 7, 5, 4)(11,19,17,15,14)(12,20,18,16,13)(21,29,28,26,23)(22,30,27,25,24)$ |
10A1 | $10^{2},5^{2}$ | $3$ | $10$ | $26$ | $( 1, 5, 9, 4, 8, 2, 6,10, 3, 7)(11,15,19,14,17)(12,16,20,13,18)(21,25,29,24,28,22,26,30,23,27)$ |
10A-1 | $10^{2},5^{2}$ | $3$ | $10$ | $26$ | $( 1, 7, 3,10, 6, 2, 8, 4, 9, 5)(11,17,14,19,15)(12,18,13,20,16)(21,27,23,30,26,22,28,24,29,25)$ |
10A3 | $10^{2},5^{2}$ | $3$ | $10$ | $26$ | $( 1, 4, 6, 7, 9, 2, 3, 5, 8,10)(11,14,15,17,19)(12,13,16,18,20)(21,24,26,27,29,22,23,25,28,30)$ |
10A-3 | $10^{2},5^{2}$ | $3$ | $10$ | $26$ | $( 1,10, 8, 5, 3, 2, 9, 7, 6, 4)(11,19,17,15,14)(12,20,18,16,13)(21,30,28,25,23,22,29,27,26,24)$ |
10B1 | $10^{2},5^{2}$ | $6$ | $10$ | $26$ | $( 1, 3, 6, 8, 9)( 2, 4, 5, 7,10)(11,27,15,22,19,25,14,30,17,24)(12,28,16,21,20,26,13,29,18,23)$ |
10B-1 | $10^{2},5^{2}$ | $6$ | $10$ | $26$ | $( 1, 9, 8, 6, 3)( 2,10, 7, 5, 4)(11,24,17,30,14,25,19,22,15,27)(12,23,18,29,13,26,20,21,16,28)$ |
10B3 | $10^{2},5^{2}$ | $6$ | $10$ | $26$ | $( 1, 8, 3, 9, 6)( 2, 7, 4,10, 5)(11,22,14,24,15,25,17,27,19,30)(12,21,13,23,16,26,18,28,20,29)$ |
10B-3 | $10^{2},5^{2}$ | $6$ | $10$ | $26$ | $( 1, 6, 9, 3, 8)( 2, 5,10, 4, 7)(11,30,19,27,17,25,15,24,14,22)(12,29,20,28,18,26,16,23,13,21)$ |
15A1 | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,23,16, 9,21,13, 8,29,12, 6,28,20, 3,26,18)( 2,24,15,10,22,14, 7,30,11, 5,27,19, 4,25,17)$ |
15A-1 | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,29,18, 8,26,13, 3,21,20, 9,28,16, 6,23,12)( 2,30,17, 7,25,14, 4,22,19,10,27,15, 5,24,11)$ |
15A2 | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,21,12, 3,23,13, 6,26,16, 8,28,18, 9,29,20)( 2,22,11, 4,24,14, 5,25,15, 7,27,17,10,30,19)$ |
15A-2 | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,26,20, 6,29,13, 9,23,18, 3,28,12, 8,21,16)( 2,25,19, 5,30,14,10,24,17, 4,27,11, 7,22,15)$ |
20A1 | $20,10$ | $6$ | $20$ | $28$ | $( 1,10, 8, 5, 3, 2, 9, 7, 6, 4)(11,23,18,30,14,26,20,22,15,28,12,24,17,29,13,25,19,21,16,27)$ |
20A-1 | $20,10$ | $6$ | $20$ | $28$ | $( 1, 4, 6, 7, 9, 2, 3, 5, 8,10)(11,28,16,22,19,26,13,30,17,23,12,27,15,21,20,25,14,29,18,24)$ |
20A3 | $20,10$ | $6$ | $20$ | $28$ | $( 1, 5, 9, 4, 8, 2, 6,10, 3, 7)(11,29,20,27,17,26,16,24,14,21,12,30,19,28,18,25,15,23,13,22)$ |
20A-3 | $20,10$ | $6$ | $20$ | $28$ | $( 1, 7, 3,10, 6, 2, 8, 4, 9, 5)(11,21,13,24,15,26,18,27,19,29,12,22,14,23,16,25,17,28,20,30)$ |
Malle's constant $a(G)$: $1/10$
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | yes | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 120.37 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 4A | 5A1 | 5A-1 | 5A2 | 5A-2 | 10A1 | 10A-1 | 10A3 | 10A-3 | 10B1 | 10B-1 | 10B3 | 10B-3 | 15A1 | 15A-1 | 15A2 | 15A-2 | 20A1 | 20A-1 | 20A3 | 20A-3 | ||
Size | 1 | 3 | 6 | 8 | 6 | 1 | 1 | 1 | 1 | 3 | 3 | 3 | 3 | 6 | 6 | 6 | 6 | 8 | 8 | 8 | 8 | 6 | 6 | 6 | 6 | |
2 P | 1A | 1A | 1A | 3A | 2A | 5A2 | 5A-2 | 5A-1 | 5A1 | 5A-2 | 5A2 | 5A-1 | 5A1 | 5A-1 | 5A1 | 5A2 | 5A-2 | 15A-1 | 15A-2 | 15A1 | 15A2 | 10A1 | 10A-1 | 10A3 | 10A-3 | |
3 P | 1A | 2A | 2B | 1A | 4A | 5A-2 | 5A2 | 5A1 | 5A-1 | 10A-3 | 10A3 | 10A1 | 10A-1 | 10B-3 | 10B3 | 10B1 | 10B-1 | 5A-2 | 5A1 | 5A2 | 5A-1 | 20A3 | 20A-3 | 20A-1 | 20A1 | |
5 P | 1A | 2A | 2B | 3A | 4A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2B | 2B | 2B | 2B | 3A | 3A | 3A | 3A | 4A | 4A | 4A | 4A | |
Type | ||||||||||||||||||||||||||
120.37.1a | R | |||||||||||||||||||||||||
120.37.1b | R | |||||||||||||||||||||||||
120.37.1c1 | C | |||||||||||||||||||||||||
120.37.1c2 | C | |||||||||||||||||||||||||
120.37.1c3 | C | |||||||||||||||||||||||||
120.37.1c4 | C | |||||||||||||||||||||||||
120.37.1d1 | C | |||||||||||||||||||||||||
120.37.1d2 | C | |||||||||||||||||||||||||
120.37.1d3 | C | |||||||||||||||||||||||||
120.37.1d4 | C | |||||||||||||||||||||||||
120.37.2a | R | |||||||||||||||||||||||||
120.37.2b1 | C | |||||||||||||||||||||||||
120.37.2b2 | C | |||||||||||||||||||||||||
120.37.2b3 | C | |||||||||||||||||||||||||
120.37.2b4 | C | |||||||||||||||||||||||||
120.37.3a | R | |||||||||||||||||||||||||
120.37.3b | R | |||||||||||||||||||||||||
120.37.3c1 | C | |||||||||||||||||||||||||
120.37.3c2 | C | |||||||||||||||||||||||||
120.37.3c3 | C | |||||||||||||||||||||||||
120.37.3c4 | C | |||||||||||||||||||||||||
120.37.3d1 | C | |||||||||||||||||||||||||
120.37.3d2 | C | |||||||||||||||||||||||||
120.37.3d3 | C | |||||||||||||||||||||||||
120.37.3d4 | C |
magma: CharacterTable(G);