Show commands:
Magma
magma: G := TransitiveGroup(30, 27);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $27$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| |
Nilpotency class: | $-1$ (not nilpotent) | magma: NilpotencyClass(G);
| |
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,17,7,4)(2,18,8,3)(5,6)(9,30,12,15)(10,29,11,16)(13,22,24,19)(14,21,23,20)(25,27,26,28), (1,11,13,28)(2,12,14,27)(3,29,5,23)(4,30,6,24)(7,25,15,21)(8,26,16,22)(9,19,10,20)(17,18) | magma: Generators(G);
|
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 5: $S_5$
Degree 6: None
Degree 10: $S_5$
Degree 15: $S_5$
Low degree siblings
5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1 $ | $10$ | $2$ | $( 3,11)( 4,12)( 5, 7)( 6, 8)(13,25)(14,26)(15,23)(16,24)(17,19)(18,20)(27,30) (28,29)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1 $ | $15$ | $2$ | $( 3,20)( 4,19)( 5, 7)( 6, 8)( 9,22)(10,21)(11,18)(12,17)(13,27)(14,28)(15,16) (23,24)(25,30)(26,29)$ |
$ 4, 4, 4, 4, 4, 4, 4, 2 $ | $30$ | $4$ | $( 1, 2)( 3,25,20,30)( 4,26,19,29)( 5, 9, 7,22)( 6,10, 8,21)(11,27,18,13) (12,28,17,14)(15,23,16,24)$ |
$ 5, 5, 5, 5, 5, 5 $ | $24$ | $5$ | $( 1, 3, 9, 6,14)( 2, 4,10, 5,13)( 7,15,22,17,26)( 8,16,21,18,25) (11,19,27,29,24)(12,20,28,30,23)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $20$ | $3$ | $( 1, 3,28)( 2, 4,27)( 5,15,21)( 6,16,22)( 7,13,29)( 8,14,30)( 9,17,20) (10,18,19)(11,25,23)(12,26,24)$ |
$ 6, 6, 6, 6, 3, 3 $ | $20$ | $6$ | $( 1, 4,24,21,16,12)( 2, 3,23,22,15,11)( 5,17,30,28,20, 8)( 6,18,29,27,19, 7) ( 9,13,25)(10,14,26)$ |
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Label: | 120.34 | magma: IdentifyGroup(G);
|
Character table: |
2 3 2 3 2 . 1 1 3 1 1 . . . 1 1 5 1 . . . 1 . . 1a 2a 2b 4a 5a 3a 6a 2P 1a 1a 1a 2b 5a 3a 3a 3P 1a 2a 2b 4a 5a 1a 2a 5P 1a 2a 2b 4a 1a 3a 6a X.1 1 1 1 1 1 1 1 X.2 1 -1 1 -1 1 1 -1 X.3 4 -2 . . -1 1 1 X.4 4 2 . . -1 1 -1 X.5 5 1 1 -1 . -1 1 X.6 5 -1 1 1 . -1 -1 X.7 6 . -2 . 1 . . |
magma: CharacterTable(G);