Properties

Label 30T27
Degree $30$
Order $120$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $S_5$

Downloads

Learn more

Show commands: Magma

magma: G := TransitiveGroup(30, 27);
 

Group action invariants

Degree $n$:  $30$
magma: t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $27$
magma: t, n := TransitiveGroupIdentification(G); t;
 
Group:  $S_5$
Parity:  $1$
magma: IsEven(G);
 
Primitive:  no
magma: IsPrimitive(G);
 
magma: NilpotencyClass(G);
 
$\card{\Aut(F/K)}$:  $2$
magma: Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  (1,17,7,4)(2,18,8,3)(5,6)(9,30,12,15)(10,29,11,16)(13,22,24,19)(14,21,23,20)(25,27,26,28), (1,11,13,28)(2,12,14,27)(3,29,5,23)(4,30,6,24)(7,25,15,21)(8,26,16,22)(9,19,10,20)(17,18)
magma: Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: None

Degree 5: $S_5$

Degree 6: None

Degree 10: $S_5$

Degree 15: $S_5$

Low degree siblings

5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 40T62

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{30}$ $1$ $1$ $0$ $()$
2A $2^{12},1^{6}$ $10$ $2$ $12$ $( 1,15)( 2,16)( 3, 5)( 4, 6)( 7,13)( 8,14)( 9,20)(10,19)(11,25)(12,26)(21,28)(22,27)$
2B $2^{14},1^{2}$ $15$ $2$ $14$ $( 1, 5)( 2, 6)( 3,10)( 4, 9)(11,20)(12,19)(13,14)(15,26)(16,25)(17,22)(18,21)(23,27)(24,28)(29,30)$
3A $3^{10}$ $20$ $3$ $20$ $( 1,15,23)( 2,16,24)( 3,25, 7)( 4,26, 8)( 5,13,11)( 6,14,12)( 9,20,18)(10,19,17)(21,28,29)(22,27,30)$
4A $4^{7},2$ $30$ $4$ $22$ $( 1,12, 5,19)( 2,11, 6,20)( 3,28,10,24)( 4,27, 9,23)( 7, 8)(13,29,14,30)(15,21,26,18)(16,22,25,17)$
5A $5^{6}$ $24$ $5$ $24$ $( 1,30,19, 4,25)( 2,29,20, 3,26)( 5,24, 8,17,11)( 6,23, 7,18,12)( 9,21,27,15,14)(10,22,28,16,13)$
6A $6^{4},3^{2}$ $20$ $6$ $24$ $( 1, 9,14,15,20, 8)( 2,10,13,16,19, 7)( 3,27,12, 5,22,26)( 4,28,11, 6,21,25)(17,29,23)(18,30,24)$

Malle's constant $a(G)$:     $1/12$

magma: ConjugacyClasses(G);
 

Group invariants

Order:  $120=2^{3} \cdot 3 \cdot 5$
magma: Order(G);
 
Cyclic:  no
magma: IsCyclic(G);
 
Abelian:  no
magma: IsAbelian(G);
 
Solvable:  no
magma: IsSolvable(G);
 
Nilpotency class:   not nilpotent
Label:  120.34
magma: IdentifyGroup(G);
 
Character table:

1A 2A 2B 3A 4A 5A 6A
Size 1 10 15 20 30 24 20
2 P 1A 1A 1A 3A 2B 5A 3A
3 P 1A 2A 2B 1A 4A 5A 2A
5 P 1A 2A 2B 3A 4A 1A 6A
Type
120.34.1a R 1 1 1 1 1 1 1
120.34.1b R 1 1 1 1 1 1 1
120.34.4a R 4 2 0 1 0 1 1
120.34.4b R 4 2 0 1 0 1 1
120.34.5a R 5 1 1 1 1 0 1
120.34.5b R 5 1 1 1 1 0 1
120.34.6a R 6 0 2 0 0 1 0

magma: CharacterTable(G);