Show commands:
Magma
magma: G := TransitiveGroup(30, 27);
Group action invariants
Degree $n$: | $30$ | magma: t, n := TransitiveGroupIdentification(G); n;
| |
Transitive number $t$: | $27$ | magma: t, n := TransitiveGroupIdentification(G); t;
| |
Group: | $S_5$ | ||
Parity: | $1$ | magma: IsEven(G);
| |
Primitive: | no | magma: IsPrimitive(G);
| magma: NilpotencyClass(G);
|
$\card{\Aut(F/K)}$: | $2$ | magma: Order(Centralizer(SymmetricGroup(n), G));
| |
Generators: | (1,17,7,4)(2,18,8,3)(5,6)(9,30,12,15)(10,29,11,16)(13,22,24,19)(14,21,23,20)(25,27,26,28), (1,11,13,28)(2,12,14,27)(3,29,5,23)(4,30,6,24)(7,25,15,21)(8,26,16,22)(9,19,10,20)(17,18) | magma: Generators(G);
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: None
Degree 5: $S_5$
Degree 6: None
Degree 10: $S_5$
Degree 15: $S_5$
Low degree siblings
5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T25, 40T62Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12},1^{6}$ | $10$ | $2$ | $12$ | $( 1,15)( 2,16)( 3, 5)( 4, 6)( 7,13)( 8,14)( 9,20)(10,19)(11,25)(12,26)(21,28)(22,27)$ |
2B | $2^{14},1^{2}$ | $15$ | $2$ | $14$ | $( 1, 5)( 2, 6)( 3,10)( 4, 9)(11,20)(12,19)(13,14)(15,26)(16,25)(17,22)(18,21)(23,27)(24,28)(29,30)$ |
3A | $3^{10}$ | $20$ | $3$ | $20$ | $( 1,15,23)( 2,16,24)( 3,25, 7)( 4,26, 8)( 5,13,11)( 6,14,12)( 9,20,18)(10,19,17)(21,28,29)(22,27,30)$ |
4A | $4^{7},2$ | $30$ | $4$ | $22$ | $( 1,12, 5,19)( 2,11, 6,20)( 3,28,10,24)( 4,27, 9,23)( 7, 8)(13,29,14,30)(15,21,26,18)(16,22,25,17)$ |
5A | $5^{6}$ | $24$ | $5$ | $24$ | $( 1,30,19, 4,25)( 2,29,20, 3,26)( 5,24, 8,17,11)( 6,23, 7,18,12)( 9,21,27,15,14)(10,22,28,16,13)$ |
6A | $6^{4},3^{2}$ | $20$ | $6$ | $24$ | $( 1, 9,14,15,20, 8)( 2,10,13,16,19, 7)( 3,27,12, 5,22,26)( 4,28,11, 6,21,25)(17,29,23)(18,30,24)$ |
Malle's constant $a(G)$: $1/12$
magma: ConjugacyClasses(G);
Group invariants
Order: | $120=2^{3} \cdot 3 \cdot 5$ | magma: Order(G);
| |
Cyclic: | no | magma: IsCyclic(G);
| |
Abelian: | no | magma: IsAbelian(G);
| |
Solvable: | no | magma: IsSolvable(G);
| |
Nilpotency class: | not nilpotent | ||
Label: | 120.34 | magma: IdentifyGroup(G);
| |
Character table: |
1A | 2A | 2B | 3A | 4A | 5A | 6A | ||
Size | 1 | 10 | 15 | 20 | 30 | 24 | 20 | |
2 P | 1A | 1A | 1A | 3A | 2B | 5A | 3A | |
3 P | 1A | 2A | 2B | 1A | 4A | 5A | 2A | |
5 P | 1A | 2A | 2B | 3A | 4A | 1A | 6A | |
Type | ||||||||
120.34.1a | R | |||||||
120.34.1b | R | |||||||
120.34.4a | R | |||||||
120.34.4b | R | |||||||
120.34.5a | R | |||||||
120.34.5b | R | |||||||
120.34.6a | R |
magma: CharacterTable(G);