Properties

Label 30T25
30T25 1 9 1->9 14 1->14 2 10 2->10 13 2->13 3 5 3->5 24 3->24 4 6 4->6 23 4->23 5->1 25 5->25 6->2 26 6->26 7 7->9 22 7->22 8 8->10 21 8->21 9->4 9->13 10->3 10->14 11 11->2 28 11->28 12 12->1 27 12->27 13->3 18 13->18 14->4 17 14->17 15 15->18 30 15->30 16 16->17 29 16->29 17->8 17->12 18->7 18->11 19 19->21 19->29 20 20->22 20->30 21->15 21->26 22->16 22->25 23->7 23->20 24->8 24->19 25->15 26->16 27->24 27->28 28->23 29->12 29->20 30->11 30->19
Degree $30$
Order $120$
Cyclic no
Abelian no
Solvable no
Primitive no
$p$-group no
Group: $S_5$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(30, 25);
 

Group invariants

Abstract group:  $S_5$
Copy content magma:IdentifyGroup(G);
 
Order:  $120=2^{3} \cdot 3 \cdot 5$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  no
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $30$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $25$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $6$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,14,17,12)(2,13,18,11)(3,24,8,10)(4,23,7,9)(5,25)(6,26)(15,30,19,21)(16,29,20,22)(27,28)$, $(1,9,13,3,5)(2,10,14,4,6)(7,22,25,15,18)(8,21,26,16,17)(11,28,23,20,30)(12,27,24,19,29)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 5: $S_5$

Degree 6: None

Degree 10: $S_5$

Degree 15: $S_5$

Low degree siblings

5T5, 6T14, 10T12, 10T13, 12T74, 15T10, 20T30, 20T32, 20T35, 24T202, 30T22, 30T27, 40T62

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{30}$ $1$ $1$ $0$ $()$
2A $2^{15}$ $10$ $2$ $15$ $( 1,15)( 2,16)( 3,22)( 4,21)( 5,27)( 6,28)( 7,20)( 8,19)( 9,14)(10,13)(11,12)(17,29)(18,30)(23,24)(25,26)$
2B $2^{12},1^{6}$ $15$ $2$ $12$ $( 1,20)( 2,19)( 3,26)( 4,25)( 5,11)( 6,12)( 9,16)(10,15)(17,23)(18,24)(21,28)(22,27)$
3A $3^{10}$ $20$ $3$ $20$ $( 1, 3,28)( 2, 4,27)( 5,16,21)( 6,15,22)( 7,14,29)( 8,13,30)( 9,17,20)(10,18,19)(11,26,23)(12,25,24)$
4A $4^{6},2^{3}$ $30$ $4$ $21$ $( 1, 4,20,25)( 2, 3,19,26)( 5,15,11,10)( 6,16,12, 9)( 7,13)( 8,14)(17,27,23,22)(18,28,24,21)(29,30)$
5A $5^{6}$ $24$ $5$ $24$ $( 1,17,13,28,11)( 2,18,14,27,12)( 3,16,20, 8, 5)( 4,15,19, 7, 6)( 9,30,26,21,23)(10,29,25,22,24)$
6A $6^{5}$ $20$ $6$ $25$ $( 1, 6, 3,15,28,22)( 2, 5, 4,16,27,21)( 7,17,14,20,29, 9)( 8,18,13,19,30,10)(11,24,26,12,23,25)$

Malle's constant $a(G)$:     $1/12$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 3A 4A 5A 6A
Size 1 10 15 20 30 24 20
2 P 1A 1A 1A 3A 2B 5A 3A
3 P 1A 2A 2B 1A 4A 5A 2A
5 P 1A 2A 2B 3A 4A 1A 6A
Type
120.34.1a R 1 1 1 1 1 1 1
120.34.1b R 1 1 1 1 1 1 1
120.34.4a R 4 2 0 1 0 1 1
120.34.4b R 4 2 0 1 0 1 1
120.34.5a R 5 1 1 1 1 0 1
120.34.5b R 5 1 1 1 1 0 1
120.34.6a R 6 0 2 0 0 1 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed