Show commands: Magma
                    
            
Group invariants
| Abstract group: | $S_3\times C_5:F_5$ | 
     | |
| Order: | $600=2^{3} \cdot 3 \cdot 5^{2}$ | 
     | |
| Cyclic: | no | 
     | |
| Abelian: | no | 
     | |
| Solvable: | yes | 
     | |
| Nilpotency class: | not nilpotent | 
     | 
Group action invariants
| Degree $n$: | $30$ | 
     | |
| Transitive number $t$: | $146$ | 
     | |
| Parity: | $-1$ | 
     | |
| Primitive: | no | 
     | |
| $\card{\Aut(F/K)}$: | $1$ | 
     | |
| Generators: | $(1,19,7,25,13)(2,21,8,27,14,3,20,9,26,15)(4,22,10,28,16)(5,24,11,30,17,6,23,12,29,18)$, $(1,17,13,29)(2,16,14,28)(3,18,15,30)(4,26,10,20)(5,25,11,19)(6,27,12,21)(7,23)(8,22)(9,24)$ | 
     | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $6$: $S_3$ $8$: $C_4\times C_2$ $12$: $D_{6}$ $20$: $F_5$ x 2 $24$: $S_3 \times C_4$ $40$: $F_{5}\times C_2$ x 2 $100$: $C_5^2 : C_4$ $120$: $F_5 \times S_3$ x 2 $200$: 20T49 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 5: None
Degree 6: $D_{6}$
Degree 10: $C_5^2 : C_4$
Degree 15: None
Low degree siblings
30T146Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{30}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{10},1^{10}$ | $3$ | $2$ | $10$ | $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)$ | 
| 2B | $2^{12},1^{6}$ | $25$ | $2$ | $12$ | $( 1, 7)( 2, 8)( 3, 9)( 4,22)( 5,23)( 6,24)(10,16)(11,17)(12,18)(13,25)(14,26)(15,27)$ | 
| 2C | $2^{14},1^{2}$ | $75$ | $2$ | $14$ | $( 2, 3)( 4,22)( 5,24)( 6,23)( 7,25)( 8,27)( 9,26)(10,16)(11,18)(12,17)(13,19)(14,21)(15,20)(29,30)$ | 
| 3A | $3^{10}$ | $2$ | $3$ | $20$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$ | 
| 4A1 | $4^{6},2^{3}$ | $25$ | $4$ | $21$ | $( 1,10, 7,16)( 2,11, 8,17)( 3,12, 9,18)( 4,13,22,25)( 5,14,23,26)( 6,15,24,27)(19,28)(20,29)(21,30)$ | 
| 4A-1 | $4^{6},2^{3}$ | $25$ | $4$ | $21$ | $( 1,16, 7,10)( 2,17, 8,11)( 3,18, 9,12)( 4,25,22,13)( 5,26,23,14)( 6,27,24,15)(19,28)(20,29)(21,30)$ | 
| 4B1 | $4^{6},2^{3}$ | $75$ | $4$ | $21$ | $( 1,23,13, 5)( 2,22,14, 4)( 3,24,15, 6)( 7,29)( 8,28)( 9,30)(10,26,16,20)(11,25,17,19)(12,27,18,21)$ | 
| 4B-1 | $4^{6},2^{3}$ | $75$ | $4$ | $21$ | $( 1, 5,13,23)( 2, 4,14,22)( 3, 6,15,24)( 7,29)( 8,28)( 9,30)(10,20,16,26)(11,19,17,25)(12,21,18,27)$ | 
| 5A | $5^{6}$ | $4$ | $5$ | $24$ | $( 1,25,19,13, 7)( 2,26,20,14, 8)( 3,27,21,15, 9)( 4,16,28,10,22)( 5,17,29,11,23)( 6,18,30,12,24)$ | 
| 5B | $5^{6}$ | $4$ | $5$ | $24$ | $( 1,13,25, 7,19)( 2,14,26, 8,20)( 3,15,27, 9,21)( 4,28,22,16,10)( 5,29,23,17,11)( 6,30,24,18,12)$ | 
| 5C1 | $5^{6}$ | $4$ | $5$ | $24$ | $( 1, 7,13,19,25)( 2, 8,14,20,26)( 3, 9,15,21,27)( 4,10,16,22,28)( 5,11,17,23,29)( 6,12,18,24,30)$ | 
| 5C2 | $5^{6}$ | $4$ | $5$ | $24$ | $( 1,13,25, 7,19)( 2,14,26, 8,20)( 3,15,27, 9,21)( 4,16,28,10,22)( 5,17,29,11,23)( 6,18,30,12,24)$ | 
| 5D1 | $5^{3},1^{15}$ | $4$ | $5$ | $12$ | $( 1,19, 7,25,13)( 2,20, 8,26,14)( 3,21, 9,27,15)$ | 
| 5D2 | $5^{3},1^{15}$ | $4$ | $5$ | $12$ | $( 1, 7,13,19,25)( 2, 8,14,20,26)( 3, 9,15,21,27)$ | 
| 6A | $6^{4},3^{2}$ | $50$ | $6$ | $24$ | $( 1, 8, 3, 7, 2, 9)( 4,23, 6,22, 5,24)(10,17,12,16,11,18)(13,26,15,25,14,27)(19,20,21)(28,29,30)$ | 
| 10A | $10^{2},5^{2}$ | $12$ | $10$ | $26$ | $( 1,13,25, 7,19)( 2,15,26, 9,20, 3,14,27, 8,21)( 4,10,16,22,28)( 5,12,17,24,29, 6,11,18,23,30)$ | 
| 10B | $10^{2},5^{2}$ | $12$ | $10$ | $26$ | $( 1, 7,13,19,25)( 2, 9,14,21,26, 3, 8,15,20,27)( 4,16,28,10,22)( 5,18,29,12,23, 6,17,30,11,24)$ | 
| 10C1 | $10^{2},5^{2}$ | $12$ | $10$ | $26$ | $( 1,19, 7,25,13)( 2,21, 8,27,14, 3,20, 9,26,15)( 4,22,10,28,16)( 5,24,11,30,17, 6,23,12,29,18)$ | 
| 10C3 | $10^{2},5^{2}$ | $12$ | $10$ | $26$ | $( 1, 8,13,20,25, 2, 7,14,19,26)( 3, 9,15,21,27)( 4,29,22,17,10, 5,28,23,16,11)( 6,30,24,18,12)$ | 
| 10D1 | $10,5,2^{5},1^{5}$ | $12$ | $10$ | $18$ | $( 1,27,19,15, 7, 3,25,21,13, 9)( 2,26,20,14, 8)( 4, 6)(10,12)(16,18)(22,24)(28,30)$ | 
| 10D3 | $10,5,2^{5},1^{5}$ | $12$ | $10$ | $18$ | $( 2, 3)( 4,16,28,10,22)( 5,18,29,12,23, 6,17,30,11,24)( 8, 9)(14,15)(20,21)(26,27)$ | 
| 12A1 | $12^{2},6$ | $50$ | $12$ | $27$ | $( 1,18, 8,10, 3,17, 7,12, 2,16, 9,11)( 4,27,23,13, 6,26,22,15, 5,25,24,14)(19,30,20,28,21,29)$ | 
| 12A-1 | $12^{2},6$ | $50$ | $12$ | $27$ | $( 1,11, 9,16, 2,12, 7,17, 3,10, 8,18)( 4,14,24,25, 5,15,22,26, 6,13,23,27)(19,29,21,28,20,30)$ | 
| 15A | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,15,26, 7,21, 2,13,27, 8,19, 3,14,25, 9,20)( 4,30,23,16,12, 5,28,24,17,10, 6,29,22,18,11)$ | 
| 15B | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,26,21,13, 8, 3,25,20,15, 7, 2,27,19,14, 9)( 4,17,30,10,23, 6,16,29,12,22, 5,18,28,11,24)$ | 
| 15C1 | $15^{2}$ | $8$ | $15$ | $28$ | $( 1, 9,14,19,27, 2, 7,15,20,25, 3, 8,13,21,26)( 4,12,17,22,30, 5,10,18,23,28, 6,11,16,24,29)$ | 
| 15C2 | $15^{2}$ | $8$ | $15$ | $28$ | $( 1,14,27, 7,20, 3,13,26, 9,19, 2,15,25, 8,21)( 4,17,30,10,23, 6,16,29,12,22, 5,18,28,11,24)$ | 
| 15D1 | $15,3^{5}$ | $8$ | $15$ | $24$ | $( 1,20, 9,25,14, 3,19, 8,27,13, 2,21, 7,26,15)( 4, 5, 6)(10,11,12)(16,17,18)(22,23,24)(28,29,30)$ | 
| 15D2 | $15,3^{5}$ | $8$ | $15$ | $24$ | $( 1,27,20,13, 9, 2,25,21,14, 7, 3,26,19,15, 8)( 4, 6, 5)(10,12,11)(16,18,17)(22,24,23)(28,30,29)$ | 
Malle's constant $a(G)$: $1/10$
Character table
| 1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 5A | 5B | 5C1 | 5C2 | 5D1 | 5D2 | 6A | 10A | 10B | 10C1 | 10C3 | 10D1 | 10D3 | 12A1 | 12A-1 | 15A | 15B | 15C1 | 15C2 | 15D1 | 15D2 | ||
| Size | 1 | 3 | 25 | 75 | 2 | 25 | 25 | 75 | 75 | 4 | 4 | 4 | 4 | 4 | 4 | 50 | 12 | 12 | 12 | 12 | 12 | 12 | 50 | 50 | 8 | 8 | 8 | 8 | 8 | 8 | |
| 2 P | 1A | 1A | 1A | 1A | 3A | 2B | 2B | 2B | 2B | 5A | 5B | 5C2 | 5C1 | 5D2 | 5D1 | 3A | 5A | 5B | 5C1 | 5C2 | 5D1 | 5D2 | 6A | 6A | 15A | 15B | 15C2 | 15C1 | 15D2 | 15D1 | |
| 3 P | 1A | 2A | 2B | 2C | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 5A | 5B | 5C2 | 5C1 | 5D2 | 5D1 | 2B | 10A | 10B | 10C3 | 10C1 | 10D3 | 10D1 | 4A1 | 4A-1 | 5B | 5A | 5C2 | 5C1 | 5D2 | 5D1 | |
| 5 P | 1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 1A | 1A | 1A | 1A | 1A | 1A | 6A | 2A | 2A | 2A | 2A | 2A | 2A | 12A1 | 12A-1 | 3A | 3A | 3A | 3A | 3A | 3A | |
| Type | |||||||||||||||||||||||||||||||
| 600.161.1a | R | ||||||||||||||||||||||||||||||
| 600.161.1b | R | ||||||||||||||||||||||||||||||
| 600.161.1c | R | ||||||||||||||||||||||||||||||
| 600.161.1d | R | ||||||||||||||||||||||||||||||
| 600.161.1e1 | C | ||||||||||||||||||||||||||||||
| 600.161.1e2 | C | ||||||||||||||||||||||||||||||
| 600.161.1f1 | C | ||||||||||||||||||||||||||||||
| 600.161.1f2 | C | ||||||||||||||||||||||||||||||
| 600.161.2a | R | ||||||||||||||||||||||||||||||
| 600.161.2b | R | ||||||||||||||||||||||||||||||
| 600.161.2c1 | C | ||||||||||||||||||||||||||||||
| 600.161.2c2 | C | ||||||||||||||||||||||||||||||
| 600.161.4a | R | ||||||||||||||||||||||||||||||
| 600.161.4b | R | ||||||||||||||||||||||||||||||
| 600.161.4c | R | ||||||||||||||||||||||||||||||
| 600.161.4d | R | ||||||||||||||||||||||||||||||
| 600.161.4e1 | R | ||||||||||||||||||||||||||||||
| 600.161.4e2 | R | ||||||||||||||||||||||||||||||
| 600.161.4f1 | R | ||||||||||||||||||||||||||||||
| 600.161.4f2 | R | ||||||||||||||||||||||||||||||
| 600.161.4g1 | R | ||||||||||||||||||||||||||||||
| 600.161.4g2 | R | ||||||||||||||||||||||||||||||
| 600.161.4h1 | R | ||||||||||||||||||||||||||||||
| 600.161.4h2 | R | ||||||||||||||||||||||||||||||
| 600.161.8a | R | ||||||||||||||||||||||||||||||
| 600.161.8b | R | ||||||||||||||||||||||||||||||
| 600.161.8c1 | R | ||||||||||||||||||||||||||||||
| 600.161.8c2 | R | ||||||||||||||||||||||||||||||
| 600.161.8d1 | R | ||||||||||||||||||||||||||||||
| 600.161.8d2 | R | 
Regular extensions
Data not computed