Properties

Label 30T146
30T146 1 17 1->17 19 1->19 2 16 2->16 21 2->21 3 18 3->18 20 3->20 4 22 4->22 26 4->26 5 24 5->24 25 5->25 6 23 6->23 27 6->27 7 7->23 7->25 8 8->22 8->27 9 9->24 9->26 10 10->20 28 10->28 11 11->19 30 11->30 12 12->21 29 12->29 13 13->1 13->29 14 14->3 14->28 15 15->2 15->30 16->4 16->14 17->6 17->13 18->5 18->15 19->5 19->7 20->4 20->9 21->6 21->8 22->10 23->12 24->11 25->11 25->13 26->10 26->15 27->12 27->14 28->2 28->16 29->1 29->18 30->3 30->17
Degree $30$
Order $600$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $S_3\times C_5:F_5$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(30, 146);
 

Group invariants

Abstract group:  $S_3\times C_5:F_5$
Copy content magma:IdentifyGroup(G);
 
Order:  $600=2^{3} \cdot 3 \cdot 5^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $30$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $146$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $1$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,19,7,25,13)(2,21,8,27,14,3,20,9,26,15)(4,22,10,28,16)(5,24,11,30,17,6,23,12,29,18)$, $(1,17,13,29)(2,16,14,28)(3,18,15,30)(4,26,10,20)(5,25,11,19)(6,27,12,21)(7,23)(8,22)(9,24)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_4$ x 2, $C_2^2$
$6$:  $S_3$
$8$:  $C_4\times C_2$
$12$:  $D_{6}$
$20$:  $F_5$ x 2
$24$:  $S_3 \times C_4$
$40$:  $F_{5}\times C_2$ x 2
$100$:  $C_5^2 : C_4$
$120$:  $F_5 \times S_3$ x 2
$200$:  20T49

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$

Degree 5: None

Degree 6: $D_{6}$

Degree 10: $C_5^2 : C_4$

Degree 15: None

Low degree siblings

30T146

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{30}$ $1$ $1$ $0$ $()$
2A $2^{10},1^{10}$ $3$ $2$ $10$ $( 2, 3)( 5, 6)( 8, 9)(11,12)(14,15)(17,18)(20,21)(23,24)(26,27)(29,30)$
2B $2^{12},1^{6}$ $25$ $2$ $12$ $( 1, 7)( 2, 8)( 3, 9)( 4,22)( 5,23)( 6,24)(10,16)(11,17)(12,18)(13,25)(14,26)(15,27)$
2C $2^{14},1^{2}$ $75$ $2$ $14$ $( 2, 3)( 4,22)( 5,24)( 6,23)( 7,25)( 8,27)( 9,26)(10,16)(11,18)(12,17)(13,19)(14,21)(15,20)(29,30)$
3A $3^{10}$ $2$ $3$ $20$ $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)(28,29,30)$
4A1 $4^{6},2^{3}$ $25$ $4$ $21$ $( 1,10, 7,16)( 2,11, 8,17)( 3,12, 9,18)( 4,13,22,25)( 5,14,23,26)( 6,15,24,27)(19,28)(20,29)(21,30)$
4A-1 $4^{6},2^{3}$ $25$ $4$ $21$ $( 1,16, 7,10)( 2,17, 8,11)( 3,18, 9,12)( 4,25,22,13)( 5,26,23,14)( 6,27,24,15)(19,28)(20,29)(21,30)$
4B1 $4^{6},2^{3}$ $75$ $4$ $21$ $( 1,23,13, 5)( 2,22,14, 4)( 3,24,15, 6)( 7,29)( 8,28)( 9,30)(10,26,16,20)(11,25,17,19)(12,27,18,21)$
4B-1 $4^{6},2^{3}$ $75$ $4$ $21$ $( 1, 5,13,23)( 2, 4,14,22)( 3, 6,15,24)( 7,29)( 8,28)( 9,30)(10,20,16,26)(11,19,17,25)(12,21,18,27)$
5A $5^{6}$ $4$ $5$ $24$ $( 1,25,19,13, 7)( 2,26,20,14, 8)( 3,27,21,15, 9)( 4,16,28,10,22)( 5,17,29,11,23)( 6,18,30,12,24)$
5B $5^{6}$ $4$ $5$ $24$ $( 1,13,25, 7,19)( 2,14,26, 8,20)( 3,15,27, 9,21)( 4,28,22,16,10)( 5,29,23,17,11)( 6,30,24,18,12)$
5C1 $5^{6}$ $4$ $5$ $24$ $( 1, 7,13,19,25)( 2, 8,14,20,26)( 3, 9,15,21,27)( 4,10,16,22,28)( 5,11,17,23,29)( 6,12,18,24,30)$
5C2 $5^{6}$ $4$ $5$ $24$ $( 1,13,25, 7,19)( 2,14,26, 8,20)( 3,15,27, 9,21)( 4,16,28,10,22)( 5,17,29,11,23)( 6,18,30,12,24)$
5D1 $5^{3},1^{15}$ $4$ $5$ $12$ $( 1,19, 7,25,13)( 2,20, 8,26,14)( 3,21, 9,27,15)$
5D2 $5^{3},1^{15}$ $4$ $5$ $12$ $( 1, 7,13,19,25)( 2, 8,14,20,26)( 3, 9,15,21,27)$
6A $6^{4},3^{2}$ $50$ $6$ $24$ $( 1, 8, 3, 7, 2, 9)( 4,23, 6,22, 5,24)(10,17,12,16,11,18)(13,26,15,25,14,27)(19,20,21)(28,29,30)$
10A $10^{2},5^{2}$ $12$ $10$ $26$ $( 1,13,25, 7,19)( 2,15,26, 9,20, 3,14,27, 8,21)( 4,10,16,22,28)( 5,12,17,24,29, 6,11,18,23,30)$
10B $10^{2},5^{2}$ $12$ $10$ $26$ $( 1, 7,13,19,25)( 2, 9,14,21,26, 3, 8,15,20,27)( 4,16,28,10,22)( 5,18,29,12,23, 6,17,30,11,24)$
10C1 $10^{2},5^{2}$ $12$ $10$ $26$ $( 1,19, 7,25,13)( 2,21, 8,27,14, 3,20, 9,26,15)( 4,22,10,28,16)( 5,24,11,30,17, 6,23,12,29,18)$
10C3 $10^{2},5^{2}$ $12$ $10$ $26$ $( 1, 8,13,20,25, 2, 7,14,19,26)( 3, 9,15,21,27)( 4,29,22,17,10, 5,28,23,16,11)( 6,30,24,18,12)$
10D1 $10,5,2^{5},1^{5}$ $12$ $10$ $18$ $( 1,27,19,15, 7, 3,25,21,13, 9)( 2,26,20,14, 8)( 4, 6)(10,12)(16,18)(22,24)(28,30)$
10D3 $10,5,2^{5},1^{5}$ $12$ $10$ $18$ $( 2, 3)( 4,16,28,10,22)( 5,18,29,12,23, 6,17,30,11,24)( 8, 9)(14,15)(20,21)(26,27)$
12A1 $12^{2},6$ $50$ $12$ $27$ $( 1,18, 8,10, 3,17, 7,12, 2,16, 9,11)( 4,27,23,13, 6,26,22,15, 5,25,24,14)(19,30,20,28,21,29)$
12A-1 $12^{2},6$ $50$ $12$ $27$ $( 1,11, 9,16, 2,12, 7,17, 3,10, 8,18)( 4,14,24,25, 5,15,22,26, 6,13,23,27)(19,29,21,28,20,30)$
15A $15^{2}$ $8$ $15$ $28$ $( 1,15,26, 7,21, 2,13,27, 8,19, 3,14,25, 9,20)( 4,30,23,16,12, 5,28,24,17,10, 6,29,22,18,11)$
15B $15^{2}$ $8$ $15$ $28$ $( 1,26,21,13, 8, 3,25,20,15, 7, 2,27,19,14, 9)( 4,17,30,10,23, 6,16,29,12,22, 5,18,28,11,24)$
15C1 $15^{2}$ $8$ $15$ $28$ $( 1, 9,14,19,27, 2, 7,15,20,25, 3, 8,13,21,26)( 4,12,17,22,30, 5,10,18,23,28, 6,11,16,24,29)$
15C2 $15^{2}$ $8$ $15$ $28$ $( 1,14,27, 7,20, 3,13,26, 9,19, 2,15,25, 8,21)( 4,17,30,10,23, 6,16,29,12,22, 5,18,28,11,24)$
15D1 $15,3^{5}$ $8$ $15$ $24$ $( 1,20, 9,25,14, 3,19, 8,27,13, 2,21, 7,26,15)( 4, 5, 6)(10,11,12)(16,17,18)(22,23,24)(28,29,30)$
15D2 $15,3^{5}$ $8$ $15$ $24$ $( 1,27,20,13, 9, 2,25,21,14, 7, 3,26,19,15, 8)( 4, 6, 5)(10,12,11)(16,18,17)(22,24,23)(28,30,29)$

Malle's constant $a(G)$:     $1/10$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 2C 3A 4A1 4A-1 4B1 4B-1 5A 5B 5C1 5C2 5D1 5D2 6A 10A 10B 10C1 10C3 10D1 10D3 12A1 12A-1 15A 15B 15C1 15C2 15D1 15D2
Size 1 3 25 75 2 25 25 75 75 4 4 4 4 4 4 50 12 12 12 12 12 12 50 50 8 8 8 8 8 8
2 P 1A 1A 1A 1A 3A 2B 2B 2B 2B 5A 5B 5C2 5C1 5D2 5D1 3A 5A 5B 5C1 5C2 5D1 5D2 6A 6A 15A 15B 15C2 15C1 15D2 15D1
3 P 1A 2A 2B 2C 1A 4A-1 4A1 4B-1 4B1 5A 5B 5C2 5C1 5D2 5D1 2B 10A 10B 10C3 10C1 10D3 10D1 4A1 4A-1 5B 5A 5C2 5C1 5D2 5D1
5 P 1A 2A 2B 2C 3A 4A1 4A-1 4B1 4B-1 1A 1A 1A 1A 1A 1A 6A 2A 2A 2A 2A 2A 2A 12A1 12A-1 3A 3A 3A 3A 3A 3A
Type
600.161.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
600.161.1b R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
600.161.1c R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
600.161.1d R 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
600.161.1e1 C 1 1 1 1 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1 1 i i 1 1 1 1 1 1
600.161.1e2 C 1 1 1 1 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1 1 i i 1 1 1 1 1 1
600.161.1f1 C 1 1 1 1 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1 1 i i 1 1 1 1 1 1
600.161.1f2 C 1 1 1 1 1 i i i i 1 1 1 1 1 1 1 1 1 1 1 1 1 i i 1 1 1 1 1 1
600.161.2a R 2 0 2 0 1 2 2 0 0 2 2 2 2 2 2 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1
600.161.2b R 2 0 2 0 1 2 2 0 0 2 2 2 2 2 2 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1
600.161.2c1 C 2 0 2 0 1 2i 2i 0 0 2 2 2 2 2 2 1 0 0 0 0 0 0 i i 1 1 1 1 1 1
600.161.2c2 C 2 0 2 0 1 2i 2i 0 0 2 2 2 2 2 2 1 0 0 0 0 0 0 i i 1 1 1 1 1 1
600.161.4a R 4 4 0 0 4 0 0 0 0 1 1 1 1 4 1 0 4 1 1 1 1 1 0 0 1 1 1 1 1 4
600.161.4b R 4 4 0 0 4 0 0 0 0 1 4 1 1 1 1 0 1 4 1 1 1 1 0 0 4 1 1 1 1 1
600.161.4c R 4 4 0 0 4 0 0 0 0 1 1 1 1 4 1 0 4 1 1 1 1 1 0 0 1 1 1 1 1 4
600.161.4d R 4 4 0 0 4 0 0 0 0 1 4 1 1 1 1 0 1 4 1 1 1 1 0 0 4 1 1 1 1 1
600.161.4e1 R 4 4 0 0 4 0 0 0 0 2ζ52+2ζ52 1 ζ52+1ζ52 2ζ51+2ζ5 1 ζ52+2+ζ52 0 1 1 2ζ51+2ζ5 ζ52+1ζ52 2ζ52+2ζ52 ζ52+2+ζ52 0 0 1 2ζ51+2ζ5 ζ52+1ζ52 2ζ52+2ζ52 ζ52+2+ζ52 1
600.161.4e2 R 4 4 0 0 4 0 0 0 0 2ζ51+2ζ5 1 ζ52+2+ζ52 2ζ52+2ζ52 1 ζ52+1ζ52 0 1 1 2ζ52+2ζ52 ζ52+2+ζ52 2ζ51+2ζ5 ζ52+1ζ52 0 0 1 2ζ52+2ζ52 ζ52+2+ζ52 2ζ51+2ζ5 ζ52+1ζ52 1
600.161.4f1 R 4 4 0 0 4 0 0 0 0 ζ52+2+ζ52 1 2ζ52+2ζ52 ζ52+1ζ52 1 2ζ51+2ζ5 0 1 1 ζ52+1ζ52 2ζ52+2ζ52 ζ52+2+ζ52 2ζ51+2ζ5 0 0 1 ζ52+1ζ52 2ζ52+2ζ52 ζ52+2+ζ52 2ζ51+2ζ5 1
600.161.4f2 R 4 4 0 0 4 0 0 0 0 ζ52+1ζ52 1 2ζ51+2ζ5 ζ52+2+ζ52 1 2ζ52+2ζ52 0 1 1 ζ52+2+ζ52 2ζ51+2ζ5 ζ52+1ζ52 2ζ52+2ζ52 0 0 1 ζ52+2+ζ52 2ζ51+2ζ5 ζ52+1ζ52 2ζ52+2ζ52 1
600.161.4g1 R 4 4 0 0 4 0 0 0 0 2ζ52+2ζ52 1 ζ52+1ζ52 2ζ51+2ζ5 1 ζ52+2+ζ52 0 1 1 2ζ512ζ5 ζ521+ζ52 2ζ522ζ52 ζ522ζ52 0 0 1 2ζ51+2ζ5 ζ52+1ζ52 2ζ52+2ζ52 ζ52+2+ζ52 1
600.161.4g2 R 4 4 0 0 4 0 0 0 0 2ζ51+2ζ5 1 ζ52+2+ζ52 2ζ52+2ζ52 1 ζ52+1ζ52 0 1 1 2ζ522ζ52 ζ522ζ52 2ζ512ζ5 ζ521+ζ52 0 0 1 2ζ52+2ζ52 ζ52+2+ζ52 2ζ51+2ζ5 ζ52+1ζ52 1
600.161.4h1 R 4 4 0 0 4 0 0 0 0 ζ52+2+ζ52 1 2ζ52+2ζ52 ζ52+1ζ52 1 2ζ51+2ζ5 0 1 1 ζ521+ζ52 2ζ522ζ52 ζ522ζ52 2ζ512ζ5 0 0 1 ζ52+1ζ52 2ζ52+2ζ52 ζ52+2+ζ52 2ζ51+2ζ5 1
600.161.4h2 R 4 4 0 0 4 0 0 0 0 ζ52+1ζ52 1 2ζ51+2ζ5 ζ52+2+ζ52 1 2ζ52+2ζ52 0 1 1 ζ522ζ52 2ζ512ζ5 ζ521+ζ52 2ζ522ζ52 0 0 1 ζ52+2+ζ52 2ζ51+2ζ5 ζ52+1ζ52 2ζ52+2ζ52 1
600.161.8a R 8 0 0 0 4 0 0 0 0 2 2 2 2 8 2 0 0 0 0 0 0 0 0 0 1 1 1 1 1 4
600.161.8b R 8 0 0 0 4 0 0 0 0 2 8 2 2 2 2 0 0 0 0 0 0 0 0 0 4 1 1 1 1 1
600.161.8c1 R 8 0 0 0 4 0 0 0 0 4ζ52+4ζ52 2 2ζ52+22ζ52 4ζ51+4ζ5 2 2ζ52+4+2ζ52 0 0 0 0 0 0 0 0 0 1 2ζ512ζ5 ζ521+ζ52 2ζ522ζ52 ζ522ζ52 1
600.161.8c2 R 8 0 0 0 4 0 0 0 0 4ζ51+4ζ5 2 2ζ52+4+2ζ52 4ζ52+4ζ52 2 2ζ52+22ζ52 0 0 0 0 0 0 0 0 0 1 2ζ522ζ52 ζ522ζ52 2ζ512ζ5 ζ521+ζ52 1
600.161.8d1 R 8 0 0 0 4 0 0 0 0 2ζ52+4+2ζ52 2 4ζ52+4ζ52 2ζ52+22ζ52 2 4ζ51+4ζ5 0 0 0 0 0 0 0 0 0 1 ζ521+ζ52 2ζ522ζ52 ζ522ζ52 2ζ512ζ5 1
600.161.8d2 R 8 0 0 0 4 0 0 0 0 2ζ52+22ζ52 2 4ζ51+4ζ5 2ζ52+4+2ζ52 2 4ζ52+4ζ52 0 0 0 0 0 0 0 0 0 1 ζ522ζ52 2ζ512ζ5 ζ521+ζ52 2ζ522ζ52 1

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed