Show commands: Magma
Group invariants
Abstract group: | $C_{15}\times D_{15}$ |
| |
Order: | $450=2 \cdot 3^{2} \cdot 5^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $30$ |
| |
Transitive number $t$: | $104$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $15$ |
| |
Generators: | $(1,25,6,28,9,16,11,20,13,24,2,27,4,30,7,18,12,19,14,23,3,26,5,29,8,17,10,21,15,22)$, $(1,10,5,14,7,2,11,6,15,8,3,12,4,13,9)(16,24,30,19,26,17,22,28,20,27,18,23,29,21,25)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $5$: $C_5$ $6$: $S_3$, $C_6$ $10$: $D_{5}$, $C_{10}$ $15$: $C_{15}$ $18$: $S_3\times C_3$ $30$: $D_{15}$, $D_5\times C_3$, $S_3 \times C_5$, $C_{30}$ $50$: $D_5\times C_5$ $90$: 30T15, 30T16 $150$: 30T36, 30T39 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 5: None
Degree 6: $S_3\times C_3$
Degree 10: $D_5\times C_5$
Degree 15: None
Low degree siblings
30T104 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
135 x 135 character table
Regular extensions
Data not computed