Show commands: Magma
Group invariants
| Abstract group: | $\He_3:C_3^2$ |
| |
| Order: | $243=3^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $27$ |
| |
| Transitive number $t$: | $96$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(10,11,12)(13,14,15)(16,17,18)(19,21,20)(22,24,23)(25,27,26)$, $(1,10,19)(2,11,20)(3,12,21)(4,14,22)(5,15,23)(6,13,24)(7,18,25)(8,16,26)(9,17,27)$, $(1,22,16)(2,23,17)(3,24,18)(4,25,10)(5,26,11)(6,27,12)(7,19,13)(8,20,14)(9,21,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ x 13 $9$: $C_3^2$ x 13 $27$: $C_3^2:C_3$ x 3, 27T4 $81$: 27T18 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$ x 4
Degree 9: $C_3^2$
Low degree siblings
27T97 x 9Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ |
| 3A1 | $3^{9}$ | $1$ | $3$ | $18$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)$ |
| 3A-1 | $3^{9}$ | $1$ | $3$ | $18$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)$ |
| 3B1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 4, 5, 6)( 7, 9, 8)(10,12,11)(16,17,18)(19,20,21)(22,24,23)$ |
| 3B-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 4, 6, 5)( 7, 8, 9)(10,11,12)(16,18,17)(19,21,20)(22,23,24)$ |
| 3C1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $(10,11,12)(13,14,15)(16,17,18)(19,21,20)(22,24,23)(25,27,26)$ |
| 3C-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,23,24)(25,26,27)$ |
| 3D1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 4, 5, 6)( 7, 9, 8)(13,14,15)(16,18,17)(22,23,24)(25,27,26)$ |
| 3D-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 4, 6, 5)( 7, 8, 9)(13,15,14)(16,17,18)(22,24,23)(25,26,27)$ |
| 3E1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 4, 6, 5)( 7, 8, 9)(10,12,11)(13,14,15)(19,20,21)(25,27,26)$ |
| 3E-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 4, 5, 6)( 7, 9, 8)(10,11,12)(13,15,14)(19,21,20)(25,26,27)$ |
| 3F1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1, 4, 7)( 2, 5, 8)( 3, 6, 9)(10,14,16)(11,15,17)(12,13,18)(19,24,25)(20,22,26)(21,23,27)$ |
| 3F-1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1, 7, 4)( 2, 8, 5)( 3, 9, 6)(10,16,14)(11,17,15)(12,18,13)(19,25,24)(20,26,22)(21,27,23)$ |
| 3G1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,21,12)( 2,19,10)( 3,20,11)( 4,24,13)( 5,22,14)( 6,23,15)( 7,27,17)( 8,25,18)( 9,26,16)$ |
| 3G-1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,10,19)( 2,11,20)( 3,12,21)( 4,15,24)( 5,13,22)( 6,14,23)( 7,17,26)( 8,18,27)( 9,16,25)$ |
| 3H1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1, 4, 7)( 2, 5, 8)( 3, 6, 9)(10,15,18)(11,13,16)(12,14,17)(19,23,26)(20,24,27)(21,22,25)$ |
| 3H-1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1, 7, 4)( 2, 8, 5)( 3, 9, 6)(10,18,15)(11,16,13)(12,17,14)(19,26,23)(20,27,24)(21,25,22)$ |
| 3I1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,17,24)( 2,18,22)( 3,16,23)( 4,10,25)( 5,11,26)( 6,12,27)( 7,15,20)( 8,13,21)( 9,14,19)$ |
| 3I-1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,24,18)( 2,22,16)( 3,23,17)( 4,27,12)( 5,25,10)( 6,26,11)( 7,21,15)( 8,19,13)( 9,20,14)$ |
| 3J1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1, 7, 4)( 2, 8, 5)( 3, 9, 6)(10,17,13)(11,18,14)(12,16,15)(19,27,22)(20,25,23)(21,26,24)$ |
| 3J-1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1, 4, 7)( 2, 5, 8)( 3, 6, 9)(10,13,17)(11,14,18)(12,15,16)(19,22,27)(20,23,25)(21,24,26)$ |
| 3K1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,21,11)( 2,19,12)( 3,20,10)( 4,24,15)( 5,22,13)( 6,23,14)( 7,27,16)( 8,25,17)( 9,26,18)$ |
| 3K-1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,10,21)( 2,11,19)( 3,12,20)( 4,15,23)( 5,13,24)( 6,14,22)( 7,17,25)( 8,18,26)( 9,16,27)$ |
| 3L1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,17,22)( 2,18,23)( 3,16,24)( 4,10,26)( 5,11,27)( 6,12,25)( 7,15,21)( 8,13,19)( 9,14,20)$ |
| 3L-1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,24,16)( 2,22,17)( 3,23,18)( 4,27,10)( 5,25,11)( 6,26,12)( 7,21,13)( 8,19,14)( 9,20,15)$ |
| 3M1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,24,17)( 2,22,18)( 3,23,16)( 4,27,11)( 5,25,12)( 6,26,10)( 7,21,14)( 8,19,15)( 9,20,13)$ |
| 3M-1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,17,23)( 2,18,24)( 3,16,22)( 4,10,27)( 5,11,25)( 6,12,26)( 7,15,19)( 8,13,20)( 9,14,21)$ |
| 3N1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,21,10)( 2,19,11)( 3,20,12)( 4,24,14)( 5,22,15)( 6,23,13)( 7,27,18)( 8,25,16)( 9,26,17)$ |
| 3N-1 | $3^{9}$ | $9$ | $3$ | $18$ | $( 1,10,20)( 2,11,21)( 3,12,19)( 4,15,22)( 5,13,23)( 6,14,24)( 7,17,27)( 8,18,25)( 9,16,26)$ |
| 9A1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,27,15, 3,26,14, 2,25,13)( 4,21,17, 6,20,16, 5,19,18)( 7,24,10, 9,23,12, 8,22,11)$ |
| 9A-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,15,26, 2,13,27, 3,14,25)( 4,17,20, 5,18,21, 6,16,19)( 7,10,23, 8,11,24, 9,12,22)$ |
| 9B1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,27,14, 3,26,13, 2,25,15)( 4,21,16, 6,20,18, 5,19,17)( 7,24,12, 9,23,11, 8,22,10)$ |
| 9B-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,15,25, 2,13,26, 3,14,27)( 4,17,19, 5,18,20, 6,16,21)( 7,10,22, 8,11,23, 9,12,24)$ |
| 9C1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,15,27, 2,13,25, 3,14,26)( 4,17,21, 5,18,19, 6,16,20)( 7,10,24, 8,11,22, 9,12,23)$ |
| 9C-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,27,13, 3,26,15, 2,25,14)( 4,21,18, 6,20,17, 5,19,16)( 7,24,11, 9,23,10, 8,22,12)$ |
Malle's constant $a(G)$: $1/12$
Character table
35 x 35 character table
Regular extensions
Data not computed