Show commands: Magma
Group invariants
| Abstract group: | $C_3^3:C_6$ |
| |
| Order: | $162=2 \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $27$ |
| |
| Transitive number $t$: | $62$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $1$ |
| |
| Generators: | $(1,8,20,2,9,21,3,7,19)(4,10,24,5,11,22,6,12,23)(13,17,26,14,18,27,15,16,25)$, $(1,18)(2,17)(3,16)(4,22)(5,24)(6,23)(7,12)(8,11)(9,10)(14,15)(19,26)(20,25)(21,27)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ $54$: $C_3^2 : C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 9: $C_3^2 : C_6$
Low degree siblings
9T22 x 3, 18T85 x 3, 27T53 x 3, 27T63Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{13},1$ | $27$ | $2$ | $13$ | $( 1,14)( 2,13)( 3,15)( 4,12)( 5,11)( 6,10)( 7,25)( 8,27)( 9,26)(16,18)(19,23)(20,22)(21,24)$ |
| 3A | $3^{9}$ | $2$ | $3$ | $18$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)$ |
| 3B | $3^{9}$ | $6$ | $3$ | $18$ | $( 1,16,15)( 2,17,13)( 3,18,14)( 4,20, 7)( 5,21, 8)( 6,19, 9)(10,26,23)(11,27,24)(12,25,22)$ |
| 3C | $3^{9}$ | $6$ | $3$ | $18$ | $( 1, 8,22)( 2, 9,23)( 3, 7,24)( 4,11,18)( 5,12,16)( 6,10,17)(13,19,26)(14,20,27)(15,21,25)$ |
| 3D | $3^{9}$ | $6$ | $3$ | $18$ | $( 1, 5,25)( 2, 6,26)( 3, 4,27)( 7,11,14)( 8,12,15)( 9,10,13)(16,21,22)(17,19,23)(18,20,24)$ |
| 3E | $3^{9}$ | $6$ | $3$ | $18$ | $( 1,18,13)( 2,16,14)( 3,17,15)( 4,19, 8)( 5,20, 9)( 6,21, 7)(10,25,24)(11,26,22)(12,27,23)$ |
| 3F1 | $3^{8},1^{3}$ | $9$ | $3$ | $16$ | $( 1, 6,25)( 2, 4,26)( 3, 5,27)( 7,14,10)( 8,15,11)( 9,13,12)(19,20,21)(22,24,23)$ |
| 3F-1 | $3^{8},1^{3}$ | $9$ | $3$ | $16$ | $( 1,25, 6)( 2,26, 4)( 3,27, 5)( 7,10,14)( 8,11,15)( 9,12,13)(19,21,20)(22,23,24)$ |
| 6A1 | $6^{4},2,1$ | $27$ | $6$ | $21$ | $( 1, 7, 6,14,25,10)( 2, 9, 4,13,26,12)( 3, 8, 5,15,27,11)(16,18)(19,24,20,23,21,22)$ |
| 6A-1 | $6^{4},2,1$ | $27$ | $6$ | $21$ | $( 1,10,25,14, 6, 7)( 2,12,26,13, 4, 9)( 3,11,27,15, 5, 8)(16,18)(19,22,21,23,20,24)$ |
| 9A1 | $9^{3}$ | $18$ | $9$ | $24$ | $( 1,19,13, 3,21,15, 2,20,14)( 4,24, 9, 6,23, 8, 5,22, 7)(10,25,18,12,27,17,11,26,16)$ |
| 9A-1 | $9^{3}$ | $18$ | $9$ | $24$ | $( 1,14,20, 2,15,21, 3,13,19)( 4, 7,22, 5, 8,23, 6, 9,24)(10,16,26,11,17,27,12,18,25)$ |
Malle's constant $a(G)$: $1/13$
Character table
| 1A | 2A | 3A | 3B | 3C | 3D | 3E | 3F1 | 3F-1 | 6A1 | 6A-1 | 9A1 | 9A-1 | ||
| Size | 1 | 27 | 2 | 6 | 6 | 6 | 6 | 9 | 9 | 27 | 27 | 18 | 18 | |
| 2 P | 1A | 1A | 3A | 3B | 3C | 3D | 3E | 3F-1 | 3F1 | 3F1 | 3F-1 | 9A-1 | 9A1 | |
| 3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 3A | 3A | |
| Type | ||||||||||||||
| 162.11.1a | R | |||||||||||||
| 162.11.1b | R | |||||||||||||
| 162.11.1c1 | C | |||||||||||||
| 162.11.1c2 | C | |||||||||||||
| 162.11.1d1 | C | |||||||||||||
| 162.11.1d2 | C | |||||||||||||
| 162.11.2a | R | |||||||||||||
| 162.11.2b1 | C | |||||||||||||
| 162.11.2b2 | C | |||||||||||||
| 162.11.6a | R | |||||||||||||
| 162.11.6b | R | |||||||||||||
| 162.11.6c | R | |||||||||||||
| 162.11.6d | R |
Regular extensions
Data not computed