Show commands: Magma
Group invariants
| Abstract group: | $C_3\wr S_3$ |
| |
| Order: | $162=2 \cdot 3^{4}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $27$ |
| |
| Transitive number $t$: | $50$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,11,2,10,3,12)(4,14,5,13,6,15)(7,27,9,25,8,26)(16,20,22,17,19,23)(18,21,24)$, $(1,3)(4,6)(7,16,15,23,11,21)(8,18,13,22,12,20)(9,17,14,24,10,19)(25,27)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ $54$: $C_3^2 : C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 9: $C_3^2 : C_6$, $C_3 \wr S_3 $
Low degree siblings
9T20 x 3, 18T86 x 3, 27T37, 27T50 x 2, 27T70Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{12},1^{3}$ | $9$ | $2$ | $12$ | $( 1,14)( 2,13)( 3,15)( 4, 8)( 5, 7)( 6, 9)(10,26)(11,25)(12,27)(16,18)(19,21)(22,24)$ |
| 3A1 | $3^{9}$ | $1$ | $3$ | $18$ | $( 1,25, 4)( 2,26, 5)( 3,27, 6)( 7,13,10)( 8,14,11)( 9,15,12)(16,22,19)(17,23,20)(18,24,21)$ |
| 3A-1 | $3^{9}$ | $1$ | $3$ | $18$ | $( 1, 4,25)( 2, 5,26)( 3, 6,27)( 7,10,13)( 8,11,14)( 9,12,15)(16,19,22)(17,20,23)(18,21,24)$ |
| 3B1 | $3^{9}$ | $3$ | $3$ | $18$ | $( 1, 6,26)( 2, 4,27)( 3, 5,25)( 7,11,15)( 8,12,13)( 9,10,14)(16,22,19)(17,23,20)(18,24,21)$ |
| 3B-1 | $3^{9}$ | $3$ | $3$ | $18$ | $( 1,26, 6)( 2,27, 4)( 3,25, 5)( 7,15,11)( 8,13,12)( 9,14,10)(16,19,22)(17,20,23)(18,21,24)$ |
| 3C1 | $3^{9}$ | $3$ | $3$ | $18$ | $( 1, 2, 3)( 4, 5, 6)( 7, 9, 8)(10,12,11)(13,15,14)(16,22,19)(17,23,20)(18,24,21)(25,26,27)$ |
| 3C-1 | $3^{9}$ | $3$ | $3$ | $18$ | $( 1, 3, 2)( 4, 6, 5)( 7, 8, 9)(10,11,12)(13,14,15)(16,19,22)(17,20,23)(18,21,24)(25,27,26)$ |
| 3D1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1,27, 5)( 2,25, 6)( 3,26, 4)( 7,14,12)( 8,15,10)( 9,13,11)$ |
| 3D-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1, 5,27)( 2, 6,25)( 3, 4,26)( 7,12,14)( 8,10,15)( 9,11,13)$ |
| 3E | $3^{9}$ | $6$ | $3$ | $18$ | $( 1,27, 5)( 2,25, 6)( 3,26, 4)( 7, 9, 8)(10,12,11)(13,15,14)(16,21,23)(17,19,24)(18,20,22)$ |
| 3F | $3^{9}$ | $18$ | $3$ | $18$ | $( 1,17,11)( 2,18,12)( 3,16,10)( 4,20,14)( 5,21,15)( 6,19,13)( 7,27,22)( 8,25,23)( 9,26,24)$ |
| 6A1 | $6^{4},3$ | $9$ | $6$ | $22$ | $( 1, 8,25,14, 4,11)( 2, 7,26,13, 5,10)( 3, 9,27,15, 6,12)(16,21,22,18,19,24)(17,20,23)$ |
| 6A-1 | $6^{4},3$ | $9$ | $6$ | $22$ | $( 1,11, 4,14,25, 8)( 2,10, 5,13,26, 7)( 3,12, 6,15,27, 9)(16,24,19,18,22,21)(17,23,20)$ |
| 6B1 | $6^{4},3$ | $9$ | $6$ | $22$ | $( 1,10, 6,14,26, 9)( 2,12, 4,13,27, 8)( 3,11, 5,15,25, 7)(16,21,22,18,19,24)(17,20,23)$ |
| 6B-1 | $6^{4},3$ | $9$ | $6$ | $22$ | $( 1, 9,26,14, 6,10)( 2, 8,27,13, 4,12)( 3, 7,25,15, 5,11)(16,24,19,18,22,21)(17,23,20)$ |
| 6C1 | $6^{4},3$ | $9$ | $6$ | $22$ | $( 1,15, 2,14, 3,13)( 4, 9, 5, 8, 6, 7)(10,25,12,26,11,27)(16,21,22,18,19,24)(17,20,23)$ |
| 6C-1 | $6^{4},3$ | $9$ | $6$ | $22$ | $( 1,13, 3,14, 2,15)( 4, 7, 6, 8, 5, 9)(10,27,11,26,12,25)(16,24,19,18,22,21)(17,23,20)$ |
| 6D1 | $6^{3},2^{3},1^{3}$ | $9$ | $6$ | $18$ | $( 1, 7,27,14, 5,12)( 2, 9,25,13, 6,11)( 3, 8,26,15, 4,10)(16,18)(19,21)(22,24)$ |
| 6D-1 | $6^{3},2^{3},1^{3}$ | $9$ | $6$ | $18$ | $( 1,12, 5,14,27, 7)( 2,11, 6,13,25, 9)( 3,10, 4,15,26, 8)(16,18)(19,21)(22,24)$ |
| 9A1 | $9^{3}$ | $18$ | $9$ | $24$ | $( 1, 8,16, 4,11,19,25,14,22)( 2, 9,17, 5,12,20,26,15,23)( 3, 7,18, 6,10,21,27,13,24)$ |
| 9A-1 | $9^{3}$ | $18$ | $9$ | $24$ | $( 1,22,14,25,19,11, 4,16, 8)( 2,23,15,26,20,12, 5,17, 9)( 3,24,13,27,21,10, 6,18, 7)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C1 | 3C-1 | 3D1 | 3D-1 | 3E | 3F | 6A1 | 6A-1 | 6B1 | 6B-1 | 6C1 | 6C-1 | 6D1 | 6D-1 | 9A1 | 9A-1 | ||
| Size | 1 | 9 | 1 | 1 | 3 | 3 | 3 | 3 | 3 | 3 | 6 | 18 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 9 | 18 | 18 | |
| 2 P | 1A | 1A | 3A-1 | 3A1 | 3B-1 | 3B1 | 3C-1 | 3C1 | 3D-1 | 3D1 | 3E | 3F | 3A1 | 3A-1 | 3B1 | 3B-1 | 3C1 | 3C-1 | 3D1 | 3D-1 | 9A-1 | 9A1 | |
| 3 P | 1A | 2A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 1A | 2A | 2A | 2A | 2A | 2A | 2A | 2A | 2A | 3A-1 | 3A1 | |
| Type | |||||||||||||||||||||||
| 162.10.1a | R | ||||||||||||||||||||||
| 162.10.1b | R | ||||||||||||||||||||||
| 162.10.1c1 | C | ||||||||||||||||||||||
| 162.10.1c2 | C | ||||||||||||||||||||||
| 162.10.1d1 | C | ||||||||||||||||||||||
| 162.10.1d2 | C | ||||||||||||||||||||||
| 162.10.2a | R | ||||||||||||||||||||||
| 162.10.2b1 | C | ||||||||||||||||||||||
| 162.10.2b2 | C | ||||||||||||||||||||||
| 162.10.3a1 | C | ||||||||||||||||||||||
| 162.10.3a2 | C | ||||||||||||||||||||||
| 162.10.3b1 | C | ||||||||||||||||||||||
| 162.10.3b2 | C | ||||||||||||||||||||||
| 162.10.3c1 | C | ||||||||||||||||||||||
| 162.10.3c2 | C | ||||||||||||||||||||||
| 162.10.3d1 | C | ||||||||||||||||||||||
| 162.10.3d2 | C | ||||||||||||||||||||||
| 162.10.3e1 | C | ||||||||||||||||||||||
| 162.10.3e2 | C | ||||||||||||||||||||||
| 162.10.3f1 | C | ||||||||||||||||||||||
| 162.10.3f2 | C | ||||||||||||||||||||||
| 162.10.6a | R |
Regular extensions
Data not computed