Group action invariants
Degree $n$: | $27$ | |
Transitive number $t$: | $50$ | |
Group: | $C_3\wr S_3$ | |
Parity: | $1$ | |
Primitive: | no | |
Nilpotency class: | $-1$ (not nilpotent) | |
$|\Aut(F/K)|$: | $3$ | |
Generators: | (1,11,2,10,3,12)(4,14,5,13,6,15)(7,27,9,25,8,26)(16,20,22,17,19,23)(18,21,24), (1,3)(4,6)(7,16,15,23,11,21)(8,18,13,22,12,20)(9,17,14,24,10,19)(25,27) |
Low degree resolvents
|G/N| Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$, $C_6$ $18$: $S_3\times C_3$ $54$: $C_3^2 : C_6$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 9: $C_3^2 : C_6$, $C_3 \wr S_3 $
Low degree siblings
9T20 x 3, 18T86 x 3, 27T37, 27T50 x 2, 27T70Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Cycle Type | Size | Order | Representative |
$ 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $1$ | $1$ | $()$ |
$ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 7,11,15)( 8,12,13)( 9,10,14)(16,21,23)(17,19,24)(18,20,22)$ |
$ 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1 $ | $3$ | $3$ | $( 7,15,11)( 8,13,12)( 9,14,10)(16,23,21)(17,24,19)(18,22,20)$ |
$ 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 1, 1, 1 $ | $9$ | $2$ | $( 2, 3)( 5, 6)( 7,18)( 8,17)( 9,16)(10,21)(11,20)(12,19)(13,24)(14,23)(15,22) (26,27)$ |
$ 6, 6, 6, 2, 2, 2, 1, 1, 1 $ | $9$ | $6$ | $( 2, 3)( 5, 6)( 7,20,15,18,11,22)( 8,19,13,17,12,24)( 9,21,14,16,10,23)(26,27)$ |
$ 6, 6, 6, 2, 2, 2, 1, 1, 1 $ | $9$ | $6$ | $( 2, 3)( 5, 6)( 7,22,11,18,15,20)( 8,24,12,17,13,19)( 9,23,10,16,14,21)(26,27)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $3$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7, 9, 8)(10,12,11)(13,15,14)(16,22,19)(17,23,20) (18,24,21)(25,26,27)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $3$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7,10,13)( 8,11,14)( 9,12,15)(16,18,17)(19,21,20) (22,24,23)(25,26,27)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $6$ | $3$ | $( 1, 2, 3)( 4, 5, 6)( 7,14,12)( 8,15,10)( 9,13,11)(16,20,24)(17,21,22) (18,19,23)(25,26,27)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1, 4,25)( 2, 5,26)( 3, 6,27)( 7,10,13)( 8,11,14)( 9,12,15)(16,19,22) (17,20,23)(18,21,24)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $3$ | $3$ | $( 1, 4,25)( 2, 5,26)( 3, 6,27)( 7,14,12)( 8,15,10)( 9,13,11)(16,24,20) (17,22,21)(18,23,19)$ |
$ 6, 6, 6, 6, 3 $ | $9$ | $6$ | $( 1, 4,25)( 2, 6,26, 3, 5,27)( 7,16, 8,18, 9,17)(10,19,11,21,12,20) (13,22,14,24,15,23)$ |
$ 6, 6, 6, 6, 3 $ | $9$ | $6$ | $( 1, 4,25)( 2, 6,26, 3, 5,27)( 7,21,13,18,10,24)( 8,20,14,17,11,23) ( 9,19,15,16,12,22)$ |
$ 6, 6, 6, 6, 3 $ | $9$ | $6$ | $( 1, 4,25)( 2, 6,26, 3, 5,27)( 7,23,12,18,14,19)( 8,22,10,17,15,21) ( 9,24,11,16,13,20)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $3$ | $3$ | $( 1, 5,27)( 2, 6,25)( 3, 4,26)( 7,13,10)( 8,14,11)( 9,15,12)(16,21,23) (17,19,24)(18,20,22)$ |
$ 9, 9, 9 $ | $18$ | $9$ | $( 1, 7,16,25,13,22, 4,10,19)( 2, 8,17,26,14,23, 5,11,20)( 3, 9,18,27,15,24, 6, 12,21)$ |
$ 9, 9, 9 $ | $18$ | $9$ | $( 1, 7,20, 4,10,23,25,13,17)( 2, 8,21, 5,11,24,26,14,18)( 3, 9,19, 6,12,22,27, 15,16)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $18$ | $3$ | $( 1, 7,24)( 2, 8,22)( 3, 9,23)( 4,10,18)( 5,11,16)( 6,12,17)(13,21,25) (14,19,26)(15,20,27)$ |
$ 6, 6, 6, 6, 3 $ | $9$ | $6$ | $( 1, 7, 4,10,25,13)( 2, 9, 5,12,26,15)( 3, 8, 6,11,27,14)(16,23,19,17,22,20) (18,24,21)$ |
$ 6, 6, 6, 6, 3 $ | $9$ | $6$ | $( 1, 8, 3, 9, 2, 7)( 4,11, 6,12, 5,10)(13,25,14,27,15,26)(16,22,19) (17,24,20,18,23,21)$ |
$ 6, 6, 6, 6, 3 $ | $9$ | $6$ | $( 1, 9,26,14, 6,10)( 2, 8,27,13, 4,12)( 3, 7,25,15, 5,11)(16,24,19,18,22,21) (17,23,20)$ |
$ 3, 3, 3, 3, 3, 3, 3, 3, 3 $ | $1$ | $3$ | $( 1,25, 4)( 2,26, 5)( 3,27, 6)( 7,13,10)( 8,14,11)( 9,15,12)(16,22,19) (17,23,20)(18,24,21)$ |
Group invariants
Order: | $162=2 \cdot 3^{4}$ | |
Cyclic: | no | |
Abelian: | no | |
Solvable: | yes | |
GAP id: | [162, 10] |
Character table: not available. |