Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_3^4:S_3^2$ |  | |
| Order: | $2916=2^{2} \cdot 3^{6}$ |  | |
| Cyclic: | no |  | |
| Abelian: | no |  | |
| Solvable: | yes |  | |
| Nilpotency class: | not nilpotent |  | 
Group action invariants
| Degree $n$: | $27$ |  | |
| Transitive number $t$: | $494$ |  | |
| Parity: | $-1$ |  | |
| Primitive: | no |  | |
| $\card{\Aut(F/K)}$: | $1$ |  | |
| Generators: | $(1,6,18,13,23,7)(2,5,16,15,24,9)(3,4,17,14,22,8)(10,19,27)(11,21,25,12,20,26)$, $(1,8,10,18,14,27)(2,9,11,16,15,25)(3,7,12,17,13,26)(4,21,24)(5,19,22)(6,20,23)$, $(1,19,9,3,21,8,2,20,7)(4,17,10,6,16,12,5,18,11)(13,23,27,15,22,26,14,24,25)$ |  | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 5 $12$: $D_{6}$ x 5 $18$: $C_3^2:C_2$ $36$: $S_3^2$ x 4, 18T12 $54$: $(C_3^2:C_3):C_2$ $108$: $C_3^2 : D_{6} $, 18T52, 18T58 $324$: 18T133, 18T135 $972$: 18T244 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$ x 2
Degree 9: $S_3^2$
Low degree siblings
27T466, 27T471Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{12},1^{3}$ | $27$ | $2$ | $12$ | $( 1,15)( 2,14)( 3,13)( 4,22)( 5,24)( 6,23)( 7,16)( 8,18)( 9,17)(10,12)(20,21)(25,27)$ | 
| 2B | $2^{9},1^{9}$ | $27$ | $2$ | $9$ | $( 4, 8)( 5, 9)( 6, 7)(16,24)(17,22)(18,23)(19,27)(20,25)(21,26)$ | 
| 2C | $2^{13},1$ | $81$ | $2$ | $13$ | $( 1, 3)( 4,25)( 5,27)( 6,26)( 7,19)( 8,21)( 9,20)(10,15)(11,14)(12,13)(16,23)(17,22)(18,24)$ | 
| 3A | $3^{9}$ | $2$ | $3$ | $18$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)$ | 
| 3B1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1, 2, 3)( 4, 6, 5)( 7, 9, 8)(13,15,14)(16,17,18)(22,23,24)$ | 
| 3B-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1, 3, 2)( 4, 5, 6)( 7, 8, 9)(13,14,15)(16,18,17)(22,24,23)$ | 
| 3C | $3^{6},1^{9}$ | $6$ | $3$ | $12$ | $( 4, 6, 5)( 7, 8, 9)(16,17,18)(19,21,20)(22,24,23)(25,26,27)$ | 
| 3D1 | $3^{6},1^{9}$ | $6$ | $3$ | $12$ | $( 4, 6, 5)(10,12,11)(13,14,15)(16,18,17)(22,23,24)(25,26,27)$ | 
| 3D-1 | $3^{6},1^{9}$ | $6$ | $3$ | $12$ | $( 4, 5, 6)(10,11,12)(13,15,14)(16,17,18)(22,24,23)(25,27,26)$ | 
| 3E | $3^{4},1^{15}$ | $18$ | $3$ | $8$ | $( 4, 5, 6)(10,11,12)(13,15,14)(19,21,20)$ | 
| 3F | $3^{9}$ | $18$ | $3$ | $18$ | $( 1,15,11)( 2,13,12)( 3,14,10)( 4,21,23)( 5,19,24)( 6,20,22)( 7,26,16)( 8,27,17)( 9,25,18)$ | 
| 3G | $3^{9}$ | $18$ | $3$ | $18$ | $( 1,17,23)( 2,18,24)( 3,16,22)( 4,15, 8)( 5,13, 9)( 6,14, 7)(10,26,20)(11,27,21)(12,25,19)$ | 
| 3H1 | $3^{9}$ | $18$ | $3$ | $18$ | $( 1,12,15)( 2,10,13)( 3,11,14)( 4,22,20)( 5,23,21)( 6,24,19)( 7,17,26)( 8,18,27)( 9,16,25)$ | 
| 3H-1 | $3^{9}$ | $18$ | $3$ | $18$ | $( 1,15,12)( 2,13,10)( 3,14,11)( 4,20,22)( 5,21,23)( 6,19,24)( 7,26,17)( 8,27,18)( 9,25,16)$ | 
| 3I | $3^{9}$ | $36$ | $3$ | $18$ | $( 1, 9,21)( 2, 7,19)( 3, 8,20)( 4,12,17)( 5,10,18)( 6,11,16)(13,25,22)(14,26,23)(15,27,24)$ | 
| 3J | $3^{7},1^{6}$ | $36$ | $3$ | $14$ | $( 1, 2, 3)( 7, 9, 8)(10,11,12)(13,14,15)(16,17,18)(19,21,20)(22,23,24)$ | 
| 3K | $3^{9}$ | $36$ | $3$ | $18$ | $( 1,18,24)( 2,16,22)( 3,17,23)( 4,14, 8)( 5,15, 9)( 6,13, 7)(10,27,21)(11,25,19)(12,26,20)$ | 
| 3L1 | $3^{9}$ | $36$ | $3$ | $18$ | $( 1, 7,21)( 2, 8,19)( 3, 9,20)( 4,12,18)( 5,10,16)( 6,11,17)(13,26,22)(14,27,23)(15,25,24)$ | 
| 3L-1 | $3^{9}$ | $36$ | $3$ | $18$ | $( 1, 8,21)( 2, 9,19)( 3, 7,20)( 4,12,16)( 5,10,17)( 6,11,18)(13,27,22)(14,25,23)(15,26,24)$ | 
| 3M | $3^{9}$ | $54$ | $3$ | $18$ | $( 1,17,23)( 2,18,24)( 3,16,22)( 4,13, 8)( 5,14, 9)( 6,15, 7)(10,27,21)(11,25,19)(12,26,20)$ | 
| 3N | $3^{9}$ | $54$ | $3$ | $18$ | $( 1,16,22)( 2,17,23)( 3,18,24)( 4,13, 7)( 5,14, 8)( 6,15, 9)(10,26,19)(11,27,20)(12,25,21)$ | 
| 3O | $3^{9}$ | $108$ | $3$ | $18$ | $( 1,11,15)( 2,12,13)( 3,10,14)( 4,22,20)( 5,23,21)( 6,24,19)( 7,17,27)( 8,18,25)( 9,16,26)$ | 
| 6A1 | $6^{3},2^{3},1^{3}$ | $27$ | $6$ | $18$ | $( 1,13, 2,15, 3,14)( 4,24, 6,22, 5,23)( 7,18, 9,16, 8,17)(10,12)(20,21)(25,27)$ | 
| 6A-1 | $6^{3},2^{3},1^{3}$ | $27$ | $6$ | $18$ | $( 1, 3)( 4,21, 6,19, 5,20)( 7,27, 9,25, 8,26)(10,13,11,15,12,14)(16,18)(23,24)$ | 
| 6B | $6^{3},3^{3}$ | $54$ | $6$ | $21$ | $( 1, 3, 2)( 4, 7, 5, 8, 6, 9)(10,12,11)(13,15,14)(16,23,17,24,18,22)(19,26,20,27,21,25)$ | 
| 6C1 | $6^{3},2^{4},1$ | $81$ | $6$ | $19$ | $( 1, 3)( 4,27, 6,25, 5,26)( 7,21, 9,19, 8,20)(10,13,11,15,12,14)(16,23)(17,22)(18,24)$ | 
| 6C-1 | $6^{3},2^{4},1$ | $81$ | $6$ | $19$ | $( 1, 3)( 4,26, 5,25, 6,27)( 7,20, 8,19, 9,21)(10,14,12,15,11,13)(16,23)(17,22)(18,24)$ | 
| 6D1 | $6^{2},3^{2},2^{3},1^{3}$ | $81$ | $6$ | $17$ | $( 1,18)( 2,16)( 3,17)( 4, 6, 5)( 7,14, 8,15, 9,13)(10,27,12,26,11,25)(19,20,21)$ | 
| 6D-1 | $6^{2},3^{2},2^{3},1^{3}$ | $81$ | $6$ | $17$ | $( 1,18)( 2,16)( 3,17)( 4, 5, 6)( 7,13, 9,15, 8,14)(10,25,11,26,12,27)(19,21,20)$ | 
| 6E | $6^{2},2^{6},1^{3}$ | $162$ | $6$ | $16$ | $( 2, 3)( 4,19, 5,21, 6,20)( 7,25)( 8,27)( 9,26)(10,14,11,13,12,15)(16,18)(22,24)$ | 
| 6F | $6^{3},3^{3}$ | $162$ | $6$ | $21$ | $( 1,26,15,16,11, 7)( 2,27,13,17,12, 8)( 3,25,14,18,10, 9)( 4,23,21)( 5,24,19)( 6,22,20)$ | 
| 6G | $6^{4},3$ | $162$ | $6$ | $22$ | $( 1,19,17,12,23,25)( 2,21,18,11,24,27)( 3,20,16,10,22,26)( 4, 9,15, 5, 8,13)( 6, 7,14)$ | 
| 6H | $6^{4},3$ | $162$ | $6$ | $22$ | $( 1,22,17, 3,23,16)( 2,24,18)( 4,26,13,20, 8,12)( 5,25,14,19, 9,11)( 6,27,15,21, 7,10)$ | 
| 6I | $6^{4},3$ | $162$ | $6$ | $22$ | $( 1,21,16,12,22,25)( 2,20,17,11,23,27)( 3,19,18,10,24,26)( 4, 9,13, 6, 7,15)( 5, 8,14)$ | 
| 6J | $6^{3},2^{4},1$ | $162$ | $6$ | $19$ | $( 1,14)( 2,13)( 3,15)( 4,17, 6,18, 5,16)( 7,22, 8,24, 9,23)(10,11)(19,27,21,25,20,26)$ | 
| 6K1 | $6^{3},3^{3}$ | $162$ | $6$ | $21$ | $( 1, 9,12,16,15,25)( 2, 7,10,17,13,26)( 3, 8,11,18,14,27)( 4,20,22)( 5,21,23)( 6,19,24)$ | 
| 6K-1 | $6^{3},3^{3}$ | $162$ | $6$ | $21$ | $( 1,25,15,16,12, 9)( 2,26,13,17,10, 7)( 3,27,14,18,11, 8)( 4,22,20)( 5,23,21)( 6,24,19)$ | 
| 6L1 | $6^{3},2^{4},1$ | $162$ | $6$ | $19$ | $( 1, 7)( 2, 9)( 3, 8)( 4,24, 6,22, 5,23)(10,26,12,27,11,25)(13,16,14,18,15,17)(20,21)$ | 
| 6L-1 | $6^{3},2^{4},1$ | $162$ | $6$ | $19$ | $( 1, 7)( 2, 9)( 3, 8)( 4,23, 5,22, 6,24)(10,25,11,27,12,26)(13,17,15,18,14,16)(20,21)$ | 
| 9A | $9^{3}$ | $108$ | $9$ | $24$ | $( 1,19, 8, 2,20, 9, 3,21, 7)( 4,17,12, 5,18,10, 6,16,11)(13,23,25,14,24,26,15,22,27)$ | 
| 9B | $9^{3}$ | $108$ | $9$ | $24$ | $( 1, 9,21, 2, 7,19, 3, 8,20)( 4,11,18, 5,12,16, 6,10,17)(13,26,23,14,27,24,15,25,22)$ | 
Malle's constant $a(G)$: $1/8$
Character table
42 x 42 character table
Regular extensions
Data not computed
