Show commands: Magma
                    
            
Group invariants
| Abstract group: | $C_3^4:S_3^2$ |  | |
| Order: | $2916=2^{2} \cdot 3^{6}$ |  | |
| Cyclic: | no |  | |
| Abelian: | no |  | |
| Solvable: | yes |  | |
| Nilpotency class: | not nilpotent |  | 
Group action invariants
| Degree $n$: | $27$ |  | |
| Transitive number $t$: | $466$ |  | |
| Parity: | $-1$ |  | |
| Primitive: | no |  | |
| $\card{\Aut(F/K)}$: | $1$ |  | |
| Generators: | $(1,20,17,3,19,16,2,21,18)(4,24,10,6,23,12,5,22,11)(7,25,15,9,27,14,8,26,13)$, $(1,13,8,12,5,16)(2,14,9,10,6,17)(3,15,7,11,4,18)(19,23,26)(20,24,27)(21,22,25)$, $(1,23,2,22,3,24)(4,25,5,27,6,26)(7,21,8,20,9,19)(10,12)(13,14)(17,18)$ |  | 
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ x 5 $12$: $D_{6}$ x 5 $18$: $C_3^2:C_2$ $36$: $S_3^2$ x 4, 18T12 $54$: $(C_3^2:C_3):C_2$ $108$: $C_3^2 : D_{6} $, 18T52, 18T58 $324$: 18T133, 18T135 $972$: 18T244 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 9: $(C_3^2:C_3):C_2$
Low degree siblings
27T471, 27T494Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative | 
| 1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ | 
| 2A | $2^{9},1^{9}$ | $27$ | $2$ | $9$ | $( 1, 3)( 4, 5)( 8, 9)(11,12)(13,15)(16,17)(19,20)(23,24)(25,27)$ | 
| 2B | $2^{9},1^{9}$ | $27$ | $2$ | $9$ | $(10,27)(11,25)(12,26)(13,21)(14,19)(15,20)(16,24)(17,22)(18,23)$ | 
| 2C | $2^{12},1^{3}$ | $81$ | $2$ | $12$ | $( 1, 2)( 4, 5)( 7, 8)(10,23)(11,22)(12,24)(13,26)(14,25)(15,27)(16,20)(17,19)(18,21)$ | 
| 3A | $3^{9}$ | $2$ | $3$ | $18$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)$ | 
| 3B1 | $3^{9}$ | $3$ | $3$ | $18$ | $( 1, 9, 5)( 2, 7, 6)( 3, 8, 4)(10,18,14)(11,16,15)(12,17,13)(19,27,23)(20,25,24)(21,26,22)$ | 
| 3B-1 | $3^{9}$ | $3$ | $3$ | $18$ | $( 1, 5, 9)( 2, 6, 7)( 3, 4, 8)(10,14,18)(11,15,16)(12,13,17)(19,23,27)(20,24,25)(21,22,26)$ | 
| 3C | $3^{6},1^{9}$ | $6$ | $3$ | $12$ | $(10,12,11)(13,15,14)(16,18,17)(19,20,21)(22,23,24)(25,26,27)$ | 
| 3D1 | $3^{9}$ | $6$ | $3$ | $18$ | $( 1, 7, 4)( 2, 8, 5)( 3, 9, 6)(10,17,15)(11,18,13)(12,16,14)(19,27,23)(20,25,24)(21,26,22)$ | 
| 3D-1 | $3^{9}$ | $6$ | $3$ | $18$ | $( 1, 4, 7)( 2, 5, 8)( 3, 6, 9)(10,15,17)(11,13,18)(12,14,16)(19,23,27)(20,24,25)(21,22,26)$ | 
| 3E | $3^{6},1^{9}$ | $18$ | $3$ | $12$ | $( 1, 4, 7)( 2, 5, 8)( 3, 6, 9)(19,25,22)(20,26,23)(21,27,24)$ | 
| 3F | $3^{6},1^{9}$ | $18$ | $3$ | $12$ | $( 1, 3, 2)( 4, 5, 6)(10,12,11)(13,14,15)(19,21,20)(22,23,24)$ | 
| 3G | $3^{9}$ | $18$ | $3$ | $18$ | $( 1,11,21)( 2,12,19)( 3,10,20)( 4,14,24)( 5,15,22)( 6,13,23)( 7,17,27)( 8,18,25)( 9,16,26)$ | 
| 3H1 | $3^{9}$ | $18$ | $3$ | $18$ | $( 1, 5, 7)( 2, 6, 8)( 3, 4, 9)(10,13,17)(11,14,18)(12,15,16)(19,24,27)(20,22,25)(21,23,26)$ | 
| 3H-1 | $3^{9}$ | $18$ | $3$ | $18$ | $( 1, 7, 5)( 2, 8, 6)( 3, 9, 4)(10,17,13)(11,18,14)(12,16,15)(19,27,24)(20,25,22)(21,26,23)$ | 
| 3I | $3^{9}$ | $36$ | $3$ | $18$ | $( 1,14,27)( 2,15,25)( 3,13,26)( 4,16,19)( 5,17,20)( 6,18,21)( 7,12,23)( 8,10,24)( 9,11,22)$ | 
| 3J | $3^{9}$ | $36$ | $3$ | $18$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,18,14)(11,16,15)(12,17,13)(19,24,26)(20,22,27)(21,23,25)$ | 
| 3K | $3^{9}$ | $36$ | $3$ | $18$ | $( 1,10,20)( 2,11,21)( 3,12,19)( 4,13,23)( 5,14,24)( 6,15,22)( 7,16,26)( 8,17,27)( 9,18,25)$ | 
| 3L1 | $3^{9}$ | $36$ | $3$ | $18$ | $( 1,13,27)( 2,14,25)( 3,15,26)( 4,18,19)( 5,16,20)( 6,17,21)( 7,11,23)( 8,12,24)( 9,10,22)$ | 
| 3L-1 | $3^{9}$ | $36$ | $3$ | $18$ | $( 1,15,27)( 2,13,25)( 3,14,26)( 4,17,19)( 5,18,20)( 6,16,21)( 7,10,23)( 8,11,24)( 9,12,22)$ | 
| 3M | $3^{9}$ | $54$ | $3$ | $18$ | $( 1,14,24)( 2,15,22)( 3,13,23)( 4,17,27)( 5,18,25)( 6,16,26)( 7,11,21)( 8,12,19)( 9,10,20)$ | 
| 3N | $3^{9}$ | $54$ | $3$ | $18$ | $( 1,15,19)( 2,13,20)( 3,14,21)( 4,18,22)( 5,16,23)( 6,17,24)( 7,12,25)( 8,10,26)( 9,11,27)$ | 
| 3O | $3^{8},1^{3}$ | $108$ | $3$ | $16$ | $( 1, 2, 3)( 4, 6, 5)(10,16,15)(11,17,13)(12,18,14)(19,24,27)(20,22,25)(21,23,26)$ | 
| 6A1 | $6^{3},3^{3}$ | $27$ | $6$ | $21$ | $( 1, 4, 9, 3, 5, 8)( 2, 6, 7)(10,14,18)(11,13,16,12,15,17)(19,24,27,20,23,25)(21,22,26)$ | 
| 6A-1 | $6^{3},3^{3}$ | $27$ | $6$ | $21$ | $( 1, 8, 4, 2, 7, 5)( 3, 9, 6)(10,18,13,12,16,15)(11,17,14)(19,25,22)(20,27,23,21,26,24)$ | 
| 6B | $6^{3},3^{3}$ | $54$ | $6$ | $21$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,25,12,27,11,26)(13,19,15,21,14,20)(16,22,18,24,17,23)$ | 
| 6C1 | $6^{4},3$ | $81$ | $6$ | $22$ | $( 1, 8, 4, 2, 7, 5)( 3, 9, 6)(10,20,13,23,16,26)(11,19,14,22,17,25)(12,21,15,24,18,27)$ | 
| 6C-1 | $6^{4},3$ | $81$ | $6$ | $22$ | $( 1, 5, 7, 2, 4, 8)( 3, 6, 9)(10,26,16,23,13,20)(11,25,17,22,14,19)(12,27,18,24,15,21)$ | 
| 6D1 | $6^{3},3^{3}$ | $81$ | $6$ | $21$ | $( 1,10, 7,16, 4,13)( 2,11, 8,17, 5,14)( 3,12, 9,18, 6,15)(19,22,25)(20,23,26)(21,24,27)$ | 
| 6D-1 | $6^{3},3^{3}$ | $81$ | $6$ | $21$ | $( 1,13, 4,16, 7,10)( 2,14, 5,17, 8,11)( 3,15, 6,18, 9,12)(19,25,22)(20,26,23)(21,27,24)$ | 
| 6E | $6^{2},3^{2},2^{3},1^{3}$ | $162$ | $6$ | $17$ | $( 1, 7, 4)( 2, 9, 5, 3, 8, 6)(10,12)(13,15)(16,18)(19,23,25,20,22,26)(21,24,27)$ | 
| 6F | $6^{2},3^{2},2^{3},1^{3}$ | $162$ | $6$ | $17$ | $( 1,10, 3,12, 2,11)( 4,14, 5,15, 6,13)( 7,18)( 8,16)( 9,17)(19,20,21)(22,24,23)$ | 
| 6G | $6^{3},3^{3}$ | $162$ | $6$ | $21$ | $( 1,21,11)( 2,20,12, 3,19,10)( 4,22,14, 5,24,15)( 6,23,13)( 7,26,17, 9,27,16)( 8,25,18)$ | 
| 6H | $6^{3},3^{3}$ | $162$ | $6$ | $21$ | $( 1,22,14, 2,24,15)( 3,23,13)( 4,25,17, 5,27,18)( 6,26,16)( 7,19,11, 8,21,12)( 9,20,10)$ | 
| 6I | $6^{3},3^{3}$ | $162$ | $6$ | $21$ | $( 1,19,15)( 2,21,13, 3,20,14)( 4,23,18, 5,22,16)( 6,24,17)( 7,27,12, 9,25,11)( 8,26,10)$ | 
| 6J | $6^{3},2^{3},1^{3}$ | $162$ | $6$ | $18$ | $( 2, 3)( 4, 6)( 7, 8)(10,26,12,27,11,25)(13,19,15,20,14,21)(16,24,18,22,17,23)$ | 
| 6K1 | $6^{3},3^{3}$ | $162$ | $6$ | $21$ | $( 1,12, 5,15, 7,16)( 2,10, 6,13, 8,17)( 3,11, 4,14, 9,18)(19,27,24)(20,25,22)(21,26,23)$ | 
| 6K-1 | $6^{3},3^{3}$ | $162$ | $6$ | $21$ | $( 1,16, 7,15, 5,12)( 2,17, 8,13, 6,10)( 3,18, 9,14, 4,11)(19,24,27)(20,22,25)(21,23,26)$ | 
| 6L1 | $6^{4},3$ | $162$ | $6$ | $22$ | $( 1,13, 7,11, 4,18)( 2,15, 8,10, 5,17)( 3,14, 9,12, 6,16)(19,24,27,20,23,25)(21,22,26)$ | 
| 6L-1 | $6^{4},3$ | $162$ | $6$ | $22$ | $( 1,18, 4,11, 7,13)( 2,17, 5,10, 8,15)( 3,16, 6,12, 9,14)(19,25,23,20,27,24)(21,26,22)$ | 
| 9A | $9^{3}$ | $108$ | $9$ | $24$ | $( 1,26,10, 3,25,12, 2,27,11)( 4,21,15, 6,20,14, 5,19,13)( 7,22,17, 9,24,16, 8,23,18)$ | 
| 9B | $9^{3}$ | $108$ | $9$ | $24$ | $( 1,12,23, 3,11,22, 2,10,24)( 4,14,27, 6,13,26, 5,15,25)( 7,16,19, 9,18,21, 8,17,20)$ | 
Malle's constant $a(G)$: $1/9$
Character table
42 x 42 character table
Regular extensions
Data not computed
