Show commands: Magma
Group invariants
| Abstract group: | $C_3^4:S_3$ |
| |
| Order: | $486=2 \cdot 3^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $27$ |
| |
| Transitive number $t$: | $195$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)$, $(2,3)(5,6)(7,22,12,18,15,19)(8,24,10,17,13,21)(9,23,11,16,14,20)(25,27)$, $(1,17,8)(2,18,9)(3,16,7)(4,21,10)(5,19,11)(6,20,12)(13,26,24)(14,27,22)(15,25,23)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $3$: $C_3$ $6$: $S_3$ x 4, $C_6$ $18$: $S_3\times C_3$ x 4, $C_3^2:C_2$ $54$: $C_3^2 : C_6$ x 3, 18T23 $162$: $C_3 \wr S_3 $, 27T61 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$ x 4
Degree 9: $C_3^2:C_2$, $C_3 \wr S_3 $
Low degree siblings
18T167 x 3, 27T194 x 6, 27T195 x 2Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{12},1^{3}$ | $27$ | $2$ | $12$ | $( 1, 8)( 2, 7)( 3, 9)( 4,10)( 5,12)( 6,11)(13,26)(14,25)(15,27)(16,18)(19,20)(22,23)$ |
| 3A1 | $3^{9}$ | $1$ | $3$ | $18$ | $( 1, 4,26)( 2, 5,27)( 3, 6,25)( 7,12,15)( 8,10,13)( 9,11,14)(16,20,23)(17,21,24)(18,19,22)$ |
| 3A-1 | $3^{9}$ | $1$ | $3$ | $18$ | $( 1,26, 4)( 2,27, 5)( 3,25, 6)( 7,15,12)( 8,13,10)( 9,14,11)(16,23,20)(17,24,21)(18,22,19)$ |
| 3B | $3^{9}$ | $2$ | $3$ | $18$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)$ |
| 3C1 | $3^{9}$ | $2$ | $3$ | $18$ | $( 1,27, 6)( 2,25, 4)( 3,26, 5)( 7,13,11)( 8,14,12)( 9,15,10)(16,24,19)(17,22,20)(18,23,21)$ |
| 3C-1 | $3^{9}$ | $2$ | $3$ | $18$ | $( 1, 6,27)( 2, 4,25)( 3, 5,26)( 7,11,13)( 8,12,14)( 9,10,15)(16,19,24)(17,20,22)(18,21,23)$ |
| 3D1 | $3^{3},1^{18}$ | $3$ | $3$ | $6$ | $( 1, 4,26)( 2, 5,27)( 3, 6,25)$ |
| 3D-1 | $3^{3},1^{18}$ | $3$ | $3$ | $6$ | $( 1,26, 4)( 2,27, 5)( 3,25, 6)$ |
| 3E1 | $3^{9}$ | $3$ | $3$ | $18$ | $( 1,26, 4)( 2,27, 5)( 3,25, 6)( 7,12,15)( 8,10,13)( 9,11,14)(16,23,20)(17,24,21)(18,22,19)$ |
| 3E-1 | $3^{9}$ | $3$ | $3$ | $18$ | $( 1, 4,26)( 2, 5,27)( 3, 6,25)( 7,15,12)( 8,13,10)( 9,14,11)(16,20,23)(17,21,24)(18,19,22)$ |
| 3F1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1, 4,26)( 2, 5,27)( 3, 6,25)( 7,12,15)( 8,10,13)( 9,11,14)$ |
| 3F-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1,26, 4)( 2,27, 5)( 3,25, 6)( 7,15,12)( 8,13,10)( 9,14,11)$ |
| 3G | $3^{9}$ | $6$ | $3$ | $18$ | $( 1,25, 5)( 2,26, 6)( 3,27, 4)( 7,11,13)( 8,12,14)( 9,10,15)(16,18,17)(19,21,20)(22,24,23)$ |
| 3H | $3^{9}$ | $6$ | $3$ | $18$ | $( 1, 3, 2)( 4, 6, 5)( 7,11,13)( 8,12,14)( 9,10,15)(16,22,21)(17,23,19)(18,24,20)(25,27,26)$ |
| 3I | $3^{6},1^{9}$ | $6$ | $3$ | $12$ | $( 1,26, 4)( 2,27, 5)( 3,25, 6)(16,20,23)(17,21,24)(18,19,22)$ |
| 3J1 | $3^{9}$ | $6$ | $3$ | $18$ | $( 1,27, 6)( 2,25, 4)( 3,26, 5)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)$ |
| 3J-1 | $3^{9}$ | $6$ | $3$ | $18$ | $( 1, 6,27)( 2, 4,25)( 3, 5,26)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)$ |
| 3K1 | $3^{9}$ | $6$ | $3$ | $18$ | $( 1,25, 5)( 2,26, 6)( 3,27, 4)( 7,14,10)( 8,15,11)( 9,13,12)(16,19,24)(17,20,22)(18,21,23)$ |
| 3K-1 | $3^{9}$ | $6$ | $3$ | $18$ | $( 1, 5,25)( 2, 6,26)( 3, 4,27)( 7,10,14)( 8,11,15)( 9,12,13)(16,24,19)(17,22,20)(18,23,21)$ |
| 3L1 | $3^{9}$ | $6$ | $3$ | $18$ | $( 1,25, 5)( 2,26, 6)( 3,27, 4)( 7, 9, 8)(10,12,11)(13,15,14)(16,22,21)(17,23,19)(18,24,20)$ |
| 3L-1 | $3^{9}$ | $6$ | $3$ | $18$ | $( 1, 5,25)( 2, 6,26)( 3, 4,27)( 7, 8, 9)(10,11,12)(13,14,15)(16,21,22)(17,19,23)(18,20,24)$ |
| 3M | $3^{9}$ | $18$ | $3$ | $18$ | $( 1,16,14)( 2,17,15)( 3,18,13)( 4,20, 9)( 5,21, 7)( 6,19, 8)(10,25,22)(11,26,23)(12,27,24)$ |
| 3N | $3^{9}$ | $18$ | $3$ | $18$ | $( 1,18, 7)( 2,16, 8)( 3,17, 9)( 4,19,12)( 5,20,10)( 6,21,11)(13,27,23)(14,25,24)(15,26,22)$ |
| 3O | $3^{9}$ | $18$ | $3$ | $18$ | $( 1,13,21)( 2,14,19)( 3,15,20)( 4, 8,24)( 5, 9,22)( 6, 7,23)(10,17,26)(11,18,27)(12,16,25)$ |
| 6A1 | $6^{4},3$ | $27$ | $6$ | $22$ | $( 1,10,26, 8, 4,13)( 2,12,27, 7, 5,15)( 3,11,25, 9, 6,14)(16,19,23,18,20,22)(17,21,24)$ |
| 6A-1 | $6^{4},3$ | $27$ | $6$ | $22$ | $( 1,13, 4, 8,26,10)( 2,15, 5, 7,27,12)( 3,14, 6, 9,25,11)(16,22,20,18,23,19)(17,24,21)$ |
| 6B1 | $6,3,2^{9}$ | $27$ | $6$ | $16$ | $( 1,26, 4)( 2,25, 5, 3,27, 6)( 7,19)( 8,21)( 9,20)(10,24)(11,23)(12,22)(13,17)(14,16)(15,18)$ |
| 6B-1 | $6,3,2^{9}$ | $27$ | $6$ | $16$ | $( 1, 4,26)( 2, 6,27, 3, 5,25)( 7,19)( 8,21)( 9,20)(10,24)(11,23)(12,22)(13,17)(14,16)(15,18)$ |
| 6C1 | $6^{4},3$ | $27$ | $6$ | $22$ | $( 1,20,26,16, 4,23)( 2,19,27,18, 5,22)( 3,21,25,17, 6,24)( 7,13,12, 8,15,10)( 9,14,11)$ |
| 6C-1 | $6^{4},3$ | $27$ | $6$ | $22$ | $( 1,23, 4,16,26,20)( 2,22, 5,18,27,19)( 3,24, 6,17,25,21)( 7,10,15, 8,12,13)( 9,11,14)$ |
| 6D1 | $6^{3},2^{3},1^{3}$ | $27$ | $6$ | $18$ | $( 1,15, 4, 7,26,12)( 2,14, 5, 9,27,11)( 3,13, 6, 8,25,10)(16,17)(20,21)(23,24)$ |
| 6D-1 | $6^{3},2^{3},1^{3}$ | $27$ | $6$ | $18$ | $( 1,12,26, 7, 4,15)( 2,11,27, 9, 5,14)( 3,10,25, 8, 6,13)(16,17)(20,21)(23,24)$ |
| 9A1 | $9^{3}$ | $18$ | $9$ | $24$ | $( 1,18,15, 4,19, 7,26,22,12)( 2,16,13, 5,20, 8,27,23,10)( 3,17,14, 6,21, 9,25,24,11)$ |
| 9A-1 | $9^{3}$ | $18$ | $9$ | $24$ | $( 1,18,12,26,22, 7, 4,19,15)( 2,16,10,27,23, 8, 5,20,13)( 3,17,11,25,24, 9, 6,21,14)$ |
| 9B1 | $9^{3}$ | $18$ | $9$ | $24$ | $( 1,16, 9,26,23,14, 4,20,11)( 2,17, 7,27,24,15, 5,21,12)( 3,18, 8,25,22,13, 6,19,10)$ |
| 9B-1 | $9^{3}$ | $18$ | $9$ | $24$ | $( 1, 9,23, 4,11,16,26,14,20)( 2, 7,24, 5,12,17,27,15,21)( 3, 8,22, 6,10,18,25,13,19)$ |
| 9C1 | $9^{3}$ | $18$ | $9$ | $24$ | $( 1,13,17, 4, 8,21,26,10,24)( 2,14,18, 5, 9,19,27,11,22)( 3,15,16, 6, 7,20,25,12,23)$ |
| 9C-1 | $9^{3}$ | $18$ | $9$ | $24$ | $( 1,10,21,26, 8,17, 4,13,24)( 2,11,19,27, 9,18, 5,14,22)( 3,12,20,25, 7,16, 6,15,23)$ |
Malle's constant $a(G)$: $1/6$
Character table
39 x 39 character table
Regular extensions
Data not computed