Show commands: Magma
Group invariants
| Abstract group: | $C_3^2.C_3^3$ |
| |
| Order: | $243=3^{5}$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | $3$ |
|
Group action invariants
| Degree $n$: | $27$ |
| |
| Transitive number $t$: | $111$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $3$ |
| |
| Generators: | $(1,10,20,2,11,21,3,12,19)(4,15,23,5,13,24,6,14,22)(7,16,27,8,17,25,9,18,26)$, $(1,14,26,2,15,27,3,13,25)(4,16,20,5,17,21,6,18,19)(7,10,22,8,11,23,9,12,24)$, $(4,5,6)(7,9,8)(13,14,15)(16,18,17)(22,23,24)(25,27,26)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $3$: $C_3$ x 13 $9$: $C_3^2$ x 13 $27$: $C_3^2:C_3$ x 3, 27T4 $81$: 27T18 Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $C_3$ x 4
Degree 9: $C_3^2$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{27}$ | $1$ | $1$ | $0$ | $()$ |
| 3A1 | $3^{9}$ | $1$ | $3$ | $18$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,12,11)(13,15,14)(16,18,17)(19,21,20)(22,24,23)(25,27,26)$ |
| 3A-1 | $3^{9}$ | $1$ | $3$ | $18$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)(22,23,24)(25,26,27)$ |
| 3B1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1, 3, 2)( 4, 6, 5)( 7, 9, 8)(10,11,12)(13,14,15)(16,17,18)$ |
| 3B-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,12,11)(13,15,14)(16,18,17)$ |
| 3C1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 4, 6, 5)( 7, 8, 9)(13,15,14)(16,17,18)(22,24,23)(25,26,27)$ |
| 3C-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 4, 5, 6)( 7, 9, 8)(13,14,15)(16,18,17)(22,23,24)(25,27,26)$ |
| 3D1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1, 3, 2)( 4, 5, 6)(10,11,12)(16,18,17)(22,24,23)(25,26,27)$ |
| 3D-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1, 2, 3)( 4, 6, 5)(10,12,11)(16,17,18)(22,23,24)(25,27,26)$ |
| 3E1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1, 2, 3)( 7, 9, 8)(10,12,11)(13,14,15)(22,24,23)(25,26,27)$ |
| 3E-1 | $3^{6},1^{9}$ | $3$ | $3$ | $12$ | $( 1, 3, 2)( 7, 8, 9)(10,11,12)(13,15,14)(22,23,24)(25,27,26)$ |
| 9A1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1, 6, 9, 3, 5, 8, 2, 4, 7)(10,15,17,12,14,16,11,13,18)(19,24,25,21,23,27,20,22,26)$ |
| 9A-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1, 9, 5, 2, 7, 6, 3, 8, 4)(10,17,14,11,18,15,12,16,13)(19,25,23,20,26,24,21,27,22)$ |
| 9B1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,21,11, 3,20,10, 2,19,12)( 4,22,15, 6,24,14, 5,23,13)( 7,27,18, 9,26,17, 8,25,16)$ |
| 9B-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,11,20, 2,12,21, 3,10,19)( 4,15,24, 5,13,22, 6,14,23)( 7,18,26, 8,16,27, 9,17,25)$ |
| 9C1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,23,18, 3,22,17, 2,24,16)( 4,26,12, 6,25,11, 5,27,10)( 7,20,15, 9,19,14, 8,21,13)$ |
| 9C-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,18,24, 2,16,22, 3,17,23)( 4,12,27, 5,10,25, 6,11,26)( 7,15,21, 8,13,19, 9,14,20)$ |
| 9D1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1, 6, 8, 3, 5, 7, 2, 4, 9)(10,15,16,12,14,18,11,13,17)(19,24,27,21,23,26,20,22,25)$ |
| 9D-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1, 9, 4, 2, 7, 5, 3, 8, 6)(10,17,13,11,18,14,12,16,15)(19,25,22,20,26,23,21,27,24)$ |
| 9E1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,21,11, 3,20,10, 2,19,12)( 4,24,13, 6,23,15, 5,22,14)( 7,25,17, 9,27,16, 8,26,18)$ |
| 9E-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,11,20, 2,12,21, 3,10,19)( 4,13,23, 5,14,24, 6,15,22)( 7,17,27, 8,18,25, 9,16,26)$ |
| 9F1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,27,15, 3,26,14, 2,25,13)( 4,19,16, 6,21,18, 5,20,17)( 7,22,12, 9,24,11, 8,23,10)$ |
| 9F-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,13,26, 2,14,27, 3,15,25)( 4,17,21, 5,18,19, 6,16,20)( 7,10,24, 8,11,22, 9,12,23)$ |
| 9G1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1, 9, 6, 2, 7, 4, 3, 8, 5)(10,17,15,11,18,13,12,16,14)(19,25,24,20,26,22,21,27,23)$ |
| 9G-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1, 6, 7, 3, 5, 9, 2, 4, 8)(10,15,18,12,14,17,11,13,16)(19,24,26,21,23,25,20,22,27)$ |
| 9H1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,11,20, 2,12,21, 3,10,19)( 4,14,22, 5,15,23, 6,13,24)( 7,16,25, 8,17,26, 9,18,27)$ |
| 9H-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,21,11, 3,20,10, 2,19,12)( 4,23,14, 6,22,13, 5,24,15)( 7,26,16, 9,25,18, 8,27,17)$ |
| 9I1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,23,17, 3,22,16, 2,24,18)( 4,25,12, 6,27,11, 5,26,10)( 7,21,13, 9,20,15, 8,19,14)$ |
| 9I-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,18,23, 2,16,24, 3,17,22)( 4,10,25, 5,11,26, 6,12,27)( 7,14,21, 8,15,19, 9,13,20)$ |
| 9J1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,27,13, 3,26,15, 2,25,14)( 4,21,18, 6,20,17, 5,19,16)( 7,23,12, 9,22,11, 8,24,10)$ |
| 9J-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,13,27, 2,14,25, 3,15,26)( 4,18,21, 5,16,19, 6,17,20)( 7,12,23, 8,10,24, 9,11,22)$ |
| 9K1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,13,25, 2,14,26, 3,15,27)( 4,16,21, 5,17,19, 6,18,20)( 7,11,22, 8,12,23, 9,10,24)$ |
| 9K-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,27,14, 3,26,13, 2,25,15)( 4,20,17, 6,19,16, 5,21,18)( 7,24,12, 9,23,11, 8,22,10)$ |
| 9L1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,23,16, 3,22,18, 2,24,17)( 4,27,12, 6,26,11, 5,25,10)( 7,19,14, 9,21,13, 8,20,15)$ |
| 9L-1 | $9^{3}$ | $9$ | $9$ | $24$ | $( 1,18,22, 2,16,23, 3,17,24)( 4,11,26, 5,12,27, 6,10,25)( 7,13,21, 8,14,19, 9,15,20)$ |
Malle's constant $a(G)$: $1/12$
Character table
35 x 35 character table
Regular extensions
Data not computed