Properties

Label 24T9232
24T9232 1 4 1->4 16 1->16 2 3 2->3 15 2->15 3->1 14 3->14 4->2 13 4->13 5 8 5->8 10 5->10 6 7 6->7 9 6->9 7->5 7->8 12 7->12 8->6 11 8->11 9->1 9->12 23 9->23 10->2 10->11 24 10->24 11->4 11->9 21 11->21 12->3 12->10 22 12->22 13->7 13->16 17 13->17 14->8 14->15 18 14->18 15->6 15->13 19 15->19 16->5 16->14 20 16->20 17->20 17->21 18->19 18->22 19->17 19->23 20->18 20->24 21->20 21->24 22->19 22->23 23->18 23->21 24->17 24->22
Degree $24$
Order $6144$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_4^3:C_2^2:S_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 9232);
 

Group invariants

Abstract group:  $C_4^3:C_2^2:S_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $6144=2^{11} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $9232$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(7,8)(9,23)(10,24)(11,21)(12,22)(13,17)(14,18)(15,19)(16,20)$, $(1,16,5,10,2,15,6,9)(3,14,8,11,4,13,7,12)(17,21,20,24)(18,22,19,23)$, $(1,4,2,3)(5,8,6,7)(9,12,10,11)(13,16,14,15)(17,20,18,19)(21,24,22,23)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$6$:  $S_3$
$8$:  $D_{4}$ x 6, $C_2^3$
$12$:  $D_{6}$ x 3
$16$:  $D_4\times C_2$ x 3
$24$:  $S_4$, $S_3 \times C_2^2$, $(C_6\times C_2):C_2$ x 2
$32$:  $C_2^2 \wr C_2$
$48$:  $S_4\times C_2$ x 3, 12T28 x 2, 24T25
$96$:  12T48, 12T49 x 2, 24T145
$192$:  $V_4^2:(S_3\times C_2)$, 12T86 x 2, 24T398
$384$:  12T136, 24T1072
$768$:  24T1558, 24T1595 x 2

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 4: None

Degree 6: $S_4$

Degree 8: None

Degree 12: 12T137

Low degree siblings

24T9230 x 8, 24T9232 x 7

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

72 x 72 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed