Show commands: Magma
Group invariants
| Abstract group: | $C_2^8.S_4$ |
| |
| Order: | $6144=2^{11} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $24$ |
| |
| Transitive number $t$: | $9055$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,23,9,7,19,12)(2,24,10,8,20,11)(3,18,14,5,21,15)(4,17,13,6,22,16)$, $(1,17,4,19)(2,18,3,20)(5,24,7,22)(6,23,8,21)(9,16,11,13)(10,15,12,14)$, $(1,23,10,2,24,9)(3,18,13,4,17,14)(5,21,16,6,22,15)(7,19,11,8,20,12)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ x 7 $48$: $S_4\times C_2$ x 7 $96$: $V_4^2:S_3$ x 7 $192$: $C_2^3:S_4$ x 2, 12T100 x 7 $384$: 16T747, 24T1056 $768$: 16T1063 x 2, 24T1691 x 2, 24T2359 $3072$: 32T205603 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$
Degree 8: None
Degree 12: 12T100
Low degree siblings
24T7929 x 8, 24T8169 x 8, 24T9055 x 15, 32T397916 x 16Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
78 x 78 character table
Regular extensions
Data not computed