Properties

Label 24T9055
24T9055 1 17 1->17 23 1->23 1->23 2 18 2->18 24 2->24 2->24 3 3->18 3->18 20 3->20 4 4->17 4->17 19 4->19 5 21 5->21 5->21 5->24 6 22 6->22 6->22 6->23 7 7->19 7->19 7->22 8 8->20 8->20 8->21 9 9->1 9->7 16 9->16 10 10->2 10->8 15 10->15 11 11->2 11->8 13 11->13 12 12->1 12->7 14 12->14 13->4 13->6 13->9 14->3 14->5 14->10 15->3 15->5 15->12 16->4 16->6 16->11 17->4 17->13 17->14 18->3 18->13 18->14 19->1 19->11 19->12 20->2 20->11 20->12 21->6 21->15 21->16 22->5 22->15 22->16 23->8 23->9 23->10 24->7 24->9 24->10
Degree $24$
Order $6144$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2^8.S_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 9055);
 

Group invariants

Abstract group:  $C_2^8.S_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $6144=2^{11} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $9055$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,23,9,7,19,12)(2,24,10,8,20,11)(3,18,14,5,21,15)(4,17,13,6,22,16)$, $(1,17,4,19)(2,18,3,20)(5,24,7,22)(6,23,8,21)(9,16,11,13)(10,15,12,14)$, $(1,23,10,2,24,9)(3,18,13,4,17,14)(5,21,16,6,22,15)(7,19,11,8,20,12)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$6$:  $S_3$
$12$:  $D_{6}$
$24$:  $S_4$ x 7
$48$:  $S_4\times C_2$ x 7
$96$:  $V_4^2:S_3$ x 7
$192$:  $C_2^3:S_4$ x 2, 12T100 x 7
$384$:  16T747, 24T1056
$768$:  16T1063 x 2, 24T1691 x 2, 24T2359
$3072$:  32T205603

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 4: None

Degree 6: $S_4$

Degree 8: None

Degree 12: 12T100

Low degree siblings

24T7929 x 8, 24T8169 x 8, 24T9055 x 15, 32T397916 x 16

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

78 x 78 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed