Show commands: Magma
Group invariants
Abstract group: | $A_4:C_8$ |
| |
Order: | $96=2^{5} \cdot 3$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $89$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $8$ |
| |
Generators: | $(1,12,5,15,2,11,6,16)(3,14,8,9,4,13,7,10)(17,24,21,20,18,23,22,19)$, $(1,17,14,2,18,13)(3,20,15,4,19,16)(5,22,9,6,21,10)(7,23,12,8,24,11)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $6$: $S_3$ $8$: $C_8$ $12$: $C_3 : C_4$ $24$: $S_4$, 24T8 $48$: 12T27 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $C_4$
Degree 6: $S_3$
Degree 8: None
Degree 12: $C_3 : C_4$
Low degree siblings
32T413Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $1$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
2B | $2^{8},1^{8}$ | $3$ | $2$ | $8$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)$ |
2C | $2^{4},1^{16}$ | $3$ | $2$ | $4$ | $(17,18)(19,20)(21,22)(23,24)$ |
3A | $3^{8}$ | $8$ | $3$ | $16$ | $( 1,17,13)( 2,18,14)( 3,20,16)( 4,19,15)( 5,22,10)( 6,21, 9)( 7,23,11)( 8,24,12)$ |
4A1 | $4^{6}$ | $1$ | $4$ | $18$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14,10,13)(11,15,12,16)(17,21,18,22)(19,24,20,23)$ |
4A-1 | $4^{6}$ | $1$ | $4$ | $18$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,16,12,15)(17,22,18,21)(19,23,20,24)$ |
4B1 | $4^{6}$ | $3$ | $4$ | $18$ | $( 1, 5, 2, 6)( 3, 8, 4, 7)( 9,13,10,14)(11,16,12,15)(17,21,18,22)(19,24,20,23)$ |
4B-1 | $4^{6}$ | $3$ | $4$ | $18$ | $( 1, 6, 2, 5)( 3, 7, 4, 8)( 9,14,10,13)(11,15,12,16)(17,22,18,21)(19,23,20,24)$ |
6A | $6^{4}$ | $8$ | $6$ | $20$ | $( 1,14,17, 2,13,18)( 3,15,20, 4,16,19)( 5, 9,22, 6,10,21)( 7,12,23, 8,11,24)$ |
8A1 | $8^{3}$ | $6$ | $8$ | $21$ | $( 1,11, 6,15, 2,12, 5,16)( 3,13, 7, 9, 4,14, 8,10)(17,23,21,19,18,24,22,20)$ |
8A-1 | $8^{3}$ | $6$ | $8$ | $21$ | $( 1,16, 5,12, 2,15, 6,11)( 3,10, 8,14, 4, 9, 7,13)(17,20,22,24,18,19,21,23)$ |
8A3 | $8^{3}$ | $6$ | $8$ | $21$ | $( 1,15, 5,11, 2,16, 6,12)( 3, 9, 8,13, 4,10, 7,14)(17,19,22,23,18,20,21,24)$ |
8A-3 | $8^{3}$ | $6$ | $8$ | $21$ | $( 1,12, 6,16, 2,11, 5,15)( 3,14, 7,10, 4,13, 8, 9)(17,24,21,20,18,23,22,19)$ |
8B1 | $8^{3}$ | $6$ | $8$ | $21$ | $( 1,12, 5,15, 2,11, 6,16)( 3,14, 8, 9, 4,13, 7,10)(17,24,21,20,18,23,22,19)$ |
8B-1 | $8^{3}$ | $6$ | $8$ | $21$ | $( 1,15, 6,12, 2,16, 5,11)( 3, 9, 7,14, 4,10, 8,13)(17,19,22,23,18,20,21,24)$ |
8B3 | $8^{3}$ | $6$ | $8$ | $21$ | $( 1,16, 6,11, 2,15, 5,12)( 3,10, 7,13, 4, 9, 8,14)(17,20,22,24,18,19,21,23)$ |
8B-3 | $8^{3}$ | $6$ | $8$ | $21$ | $( 1,11, 5,16, 2,12, 6,15)( 3,13, 8,10, 4,14, 7, 9)(17,23,21,19,18,24,22,20)$ |
12A1 | $12^{2}$ | $8$ | $12$ | $22$ | $( 1,21,14, 5,17, 9, 2,22,13, 6,18,10)( 3,23,15, 8,20,11, 4,24,16, 7,19,12)$ |
12A-1 | $12^{2}$ | $8$ | $12$ | $22$ | $( 1,22,14, 6,17,10, 2,21,13, 5,18, 9)( 3,24,15, 7,20,12, 4,23,16, 8,19,11)$ |
Malle's constant $a(G)$: $1/4$
Character table
1A | 2A | 2B | 2C | 3A | 4A1 | 4A-1 | 4B1 | 4B-1 | 6A | 8A1 | 8A-1 | 8A3 | 8A-3 | 8B1 | 8B-1 | 8B3 | 8B-3 | 12A1 | 12A-1 | ||
Size | 1 | 1 | 3 | 3 | 8 | 1 | 1 | 3 | 3 | 8 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 6 | 8 | 8 | |
2 P | 1A | 1A | 1A | 1A | 3A | 2A | 2A | 2A | 2A | 3A | 4A1 | 4A-1 | 4A-1 | 4A1 | 4B1 | 4B-1 | 4B-1 | 4B1 | 6A | 6A | |
3 P | 1A | 2A | 2B | 2C | 1A | 4A-1 | 4A1 | 4B-1 | 4B1 | 2A | 8A3 | 8A-3 | 8A1 | 8A-1 | 8B3 | 8B-3 | 8B1 | 8B-1 | 4A-1 | 4A1 | |
Type | |||||||||||||||||||||
96.65.1a | R | ||||||||||||||||||||
96.65.1b | R | ||||||||||||||||||||
96.65.1c1 | C | ||||||||||||||||||||
96.65.1c2 | C | ||||||||||||||||||||
96.65.1d1 | C | ||||||||||||||||||||
96.65.1d2 | C | ||||||||||||||||||||
96.65.1d3 | C | ||||||||||||||||||||
96.65.1d4 | C | ||||||||||||||||||||
96.65.2a | R | ||||||||||||||||||||
96.65.2b | S | ||||||||||||||||||||
96.65.2c1 | C | ||||||||||||||||||||
96.65.2c2 | C | ||||||||||||||||||||
96.65.3a | R | ||||||||||||||||||||
96.65.3b | R | ||||||||||||||||||||
96.65.3c1 | C | ||||||||||||||||||||
96.65.3c2 | C | ||||||||||||||||||||
96.65.3d1 | C | ||||||||||||||||||||
96.65.3d2 | C | ||||||||||||||||||||
96.65.3d3 | C | ||||||||||||||||||||
96.65.3d4 | C |
Regular extensions
Data not computed