Show commands: Magma
Group invariants
Abstract group: | $C_3^4:C_4^2:C_2^2$ |
| |
Order: | $5184=2^{6} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $7644$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,20)(2,19)(3,9)(4,10)(5,24)(6,23)(7,13)(8,14)(11,18)(12,17)(15,21)(16,22)$, $(1,24,2,23)(3,21,4,22)(5,11,6,12)(7,9,8,10)(13,19,14,20)(15,17,16,18)$, $(9,18)(10,17)(11,19)(12,20)$, $(1,2)(3,4)(5,6)(7,8)(9,10)(11,20)(12,19)(13,21)(14,22)(15,16)(17,18)(23,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 15 $4$: $C_4$ x 8, $C_2^2$ x 35 $8$: $C_4\times C_2$ x 28, $C_2^3$ x 15 $16$: $C_4\times C_2^2$ x 14, $C_2^4$ $32$: $Q_8:C_2^2$ x 2, 32T34 $64$: 16T68 $2592$: 12T242 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 6: None
Degree 8: $C_4\times C_2$
Degree 12: 12T242
Low degree siblings
24T7644 x 7, 24T7650 x 8, 36T6055 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
84 x 84 character table
Regular extensions
Data not computed