Properties

Label 24T7644
24T7644 1 2 1->2 20 1->20 24 1->24 19 2->19 23 2->23 3 4 3->4 9 3->9 21 3->21 10 4->10 22 4->22 5 6 5->6 11 5->11 5->24 12 6->12 6->23 7 8 7->8 7->9 13 7->13 8->10 14 8->14 9->8 9->10 18 9->18 10->7 17 10->17 11->6 11->18 11->19 11->20 12->5 12->17 12->19 12->20 13->19 13->21 14->20 14->22 15 16 15->16 15->17 15->21 16->18 16->22 17->16 17->18 18->15 19->14 20->13 21->4 22->3 23->1 23->24 24->2
Degree $24$
Order $5184$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_3^4:C_4^2:C_2^2$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 7644);
 

Group invariants

Abstract group:  $C_3^4:C_4^2:C_2^2$
Copy content magma:IdentifyGroup(G);
 
Order:  $5184=2^{6} \cdot 3^{4}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $7644$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,20)(2,19)(3,9)(4,10)(5,24)(6,23)(7,13)(8,14)(11,18)(12,17)(15,21)(16,22)$, $(1,24,2,23)(3,21,4,22)(5,11,6,12)(7,9,8,10)(13,19,14,20)(15,17,16,18)$, $(9,18)(10,17)(11,19)(12,20)$, $(1,2)(3,4)(5,6)(7,8)(9,10)(11,20)(12,19)(13,21)(14,22)(15,16)(17,18)(23,24)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 15
$4$:  $C_4$ x 8, $C_2^2$ x 35
$8$:  $C_4\times C_2$ x 28, $C_2^3$ x 15
$16$:  $C_4\times C_2^2$ x 14, $C_2^4$
$32$:  $Q_8:C_2^2$ x 2, 32T34
$64$:  16T68
$2592$:  12T242

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 3: None

Degree 4: $C_4$ x 2, $C_2^2$

Degree 6: None

Degree 8: $C_4\times C_2$

Degree 12: 12T242

Low degree siblings

24T7644 x 7, 24T7650 x 8, 36T6055 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

84 x 84 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed