Properties

Label 24T6428
24T6428 1 12 1->12 21 1->21 23 1->23 2 11 2->11 22 2->22 24 2->24 3 9 3->9 3->22 3->23 4 10 4->10 4->21 4->24 5 15 5->15 18 5->18 20 5->20 6 16 6->16 17 6->17 19 6->19 7 14 7->14 7->18 7->19 8 13 8->13 8->17 8->20 9->1 9->10 9->18 10->2 10->17 11->4 11->19 12->3 12->20 13->5 13->14 13->24 14->6 14->23 15->8 15->21 16->7 16->22 17->2 17->4 17->14 18->1 18->3 18->13 19->2 19->3 19->15 20->1 20->4 20->16 21->6 21->7 21->12 22->5 22->8 22->11 23->6 23->8 23->9 24->5 24->7 24->10
Degree $24$
Order $3072$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2^7:S_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 6428);
 

Group invariants

Abstract group:  $C_2^7:S_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $3072=2^{10} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $6428$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,23,6,17,2,24,5,18)(3,22,8,20,4,21,7,19)(9,10)(13,14)$, $(1,12,20)(2,11,19)(3,9,18)(4,10,17)(5,15,21,6,16,22)(7,14,23,8,13,24)$, $(1,21,12,3,23,9)(2,22,11,4,24,10)(5,20,16,7,18,13)(6,19,15,8,17,14)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$6$:  $S_3$
$8$:  $C_2^3$
$12$:  $D_{6}$ x 3
$24$:  $S_4$ x 3, $S_3 \times C_2^2$
$48$:  $S_4\times C_2$ x 9
$96$:  $V_4^2:S_3$, 12T48 x 3
$192$:  12T100 x 3
$384$:  12T139, 16T751 x 2
$768$:  16T1063, 32T34928
$1536$:  24T3330

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: None

Degree 3: $S_3$

Degree 4: None

Degree 6: $S_4$, $S_4\times C_2$ x 2

Degree 8: None

Degree 12: 12T103

Low degree siblings

24T5377 x 4, 24T5384 x 4, 24T5435 x 4, 24T5444 x 4, 24T5591 x 4, 24T5593 x 4, 24T5731 x 4, 24T5744 x 4, 24T6285 x 4, 24T6428 x 3, 24T6790 x 4, 24T6812 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

62 x 62 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed