Show commands: Magma
Group invariants
Abstract group: | $C_3^2:C_8$ |
| |
Order: | $72=2^{3} \cdot 3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $63$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $12$ |
| |
Generators: | $(1,15,22,20,2,16,21,19)(3,10,24,6,4,9,23,5)(7,14,11,18,8,13,12,17)$, $(1,17,10)(2,18,9)(5,13,21)(6,14,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $4$: $C_4$ $8$: $C_8$ $36$: $C_3^2:C_4$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $C_4$
Degree 6: $C_3^2:C_4$
Degree 8: $C_8$
Degree 12: $(C_3\times C_3):C_4$
Low degree siblings
24T63Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $1$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
3A | $3^{4},1^{12}$ | $4$ | $3$ | $8$ | $( 3,12,19)( 4,11,20)( 7,24,15)( 8,23,16)$ |
3B | $3^{8}$ | $4$ | $3$ | $16$ | $( 1,17,10)( 2,18, 9)( 3,19,12)( 4,20,11)( 5,13,21)( 6,14,22)( 7,15,24)( 8,16,23)$ |
4A1 | $4^{6}$ | $9$ | $4$ | $18$ | $( 1, 6, 2, 5)( 3,15, 4,16)( 7,20, 8,19)( 9,13,10,14)(11,23,12,24)(17,22,18,21)$ |
4A-1 | $4^{6}$ | $9$ | $4$ | $18$ | $( 1, 5, 2, 6)( 3,16, 4,15)( 7,19, 8,20)( 9,14,10,13)(11,24,12,23)(17,21,18,22)$ |
6A | $6^{2},2^{6}$ | $4$ | $6$ | $16$ | $( 1, 2)( 3,20,12, 4,19,11)( 5, 6)( 7,16,24, 8,15,23)( 9,10)(13,14)(17,18)(21,22)$ |
6B | $6^{4}$ | $4$ | $6$ | $20$ | $( 1, 9,17, 2,10,18)( 3,11,19, 4,12,20)( 5,22,13, 6,21,14)( 7,23,15, 8,24,16)$ |
8A1 | $8^{3}$ | $9$ | $8$ | $21$ | $( 1,16, 6, 3, 2,15, 5, 4)( 7,21,20,17, 8,22,19,18)( 9,24,13,11,10,23,14,12)$ |
8A-1 | $8^{3}$ | $9$ | $8$ | $21$ | $( 1, 4, 5,15, 2, 3, 6,16)( 7,18,19,22, 8,17,20,21)( 9,12,14,23,10,11,13,24)$ |
8A3 | $8^{3}$ | $9$ | $8$ | $21$ | $( 1, 3, 5,16, 2, 4, 6,15)( 7,17,19,21, 8,18,20,22)( 9,11,14,24,10,12,13,23)$ |
8A-3 | $8^{3}$ | $9$ | $8$ | $21$ | $( 1,15, 6, 4, 2,16, 5, 3)( 7,22,20,18, 8,21,19,17)( 9,23,13,12,10,24,14,11)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 3A | 3B | 4A1 | 4A-1 | 6A | 6B | 8A1 | 8A-1 | 8A3 | 8A-3 | ||
Size | 1 | 1 | 4 | 4 | 9 | 9 | 4 | 4 | 9 | 9 | 9 | 9 | |
2 P | 1A | 1A | 3A | 3B | 2A | 2A | 3A | 3B | 4A1 | 4A-1 | 4A-1 | 4A1 | |
3 P | 1A | 2A | 1A | 1A | 4A-1 | 4A1 | 2A | 2A | 8A3 | 8A-3 | 8A1 | 8A-1 | |
Type | |||||||||||||
72.19.1a | R | ||||||||||||
72.19.1b | R | ||||||||||||
72.19.1c1 | C | ||||||||||||
72.19.1c2 | C | ||||||||||||
72.19.1d1 | C | ||||||||||||
72.19.1d2 | C | ||||||||||||
72.19.1d3 | C | ||||||||||||
72.19.1d4 | C | ||||||||||||
72.19.4a | R | ||||||||||||
72.19.4b | R | ||||||||||||
72.19.4c | S | ||||||||||||
72.19.4d | S |
Regular extensions
Data not computed