Show commands: Magma
Group invariants
| Abstract group: | $C_2^8:D_6$ |
| |
| Order: | $3072=2^{10} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $24$ |
| |
| Transitive number $t$: | $6012$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,2)(5,8,6,7)(9,11,10,12)(15,16)(17,20,18,19)(21,24,22,23)$, $(1,19)(2,20)(3,17)(4,18)(5,24,6,23)(7,22,8,21)(9,14,10,13)(11,16,12,15)$, $(1,21,2,22)(3,24,4,23)(5,14,8,16)(6,13,7,15)(9,18,11,19)(10,17,12,20)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $24$: $S_4$ x 3 $48$: $S_4\times C_2$ x 3 $96$: $V_4^2:S_3$ $192$: $V_4^2:(S_3\times C_2)$ x 6, 12T100 $768$: 16T1068 x 3 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_3$
Degree 8: None
Degree 12: 12T69
Low degree siblings
16T1526 x 8, 24T5340 x 8, 24T6012 x 7, 24T6021 x 16, 24T6028 x 48, 24T6030 x 48, 32T205521 x 16, 32T205529 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
58 x 58 character table
Regular extensions
Data not computed