Properties

Label 24T6012
24T6012 1 2 1->2 19 1->19 21 1->21 20 2->20 22 2->22 3 17 3->17 24 3->24 4 18 4->18 23 4->23 5 8 5->8 14 5->14 5->24 6 7 6->7 13 6->13 6->23 7->5 15 7->15 7->22 8->6 16 8->16 8->21 9 11 9->11 9->14 9->18 10 12 10->12 10->13 10->17 11->10 11->16 11->19 12->9 12->15 12->20 13->7 13->9 14->8 14->10 15->6 15->11 15->16 16->5 16->12 17->12 17->20 18->11 18->19 19->9 19->17 20->10 20->18 21->2 21->7 21->24 22->1 22->8 22->23 23->3 23->5 23->21 24->4 24->6 24->22
Degree $24$
Order $3072$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2^8:D_6$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 6012);
 

Group invariants

Abstract group:  $C_2^8:D_6$
Copy content magma:IdentifyGroup(G);
 
Order:  $3072=2^{10} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $6012$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,2)(5,8,6,7)(9,11,10,12)(15,16)(17,20,18,19)(21,24,22,23)$, $(1,19)(2,20)(3,17)(4,18)(5,24,6,23)(7,22,8,21)(9,14,10,13)(11,16,12,15)$, $(1,21,2,22)(3,24,4,23)(5,14,8,16)(6,13,7,15)(9,18,11,19)(10,17,12,20)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$6$:  $S_3$
$12$:  $D_{6}$
$24$:  $S_4$ x 3
$48$:  $S_4\times C_2$ x 3
$96$:  $V_4^2:S_3$
$192$:  $V_4^2:(S_3\times C_2)$ x 6, 12T100
$768$:  16T1068 x 3

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$

Degree 4: None

Degree 6: $S_3$

Degree 8: None

Degree 12: 12T69

Low degree siblings

16T1526 x 8, 24T5340 x 8, 24T6012 x 7, 24T6021 x 16, 24T6028 x 48, 24T6030 x 48, 32T205521 x 16, 32T205529 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

58 x 58 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed