Properties

Label 24T5391
24T5391 1 3 1->3 14 1->14 18 1->18 2 4 2->4 13 2->13 17 2->17 15 3->15 20 3->20 16 4->16 19 4->19 5 12 5->12 5->19 24 5->24 6 11 6->11 6->20 23 6->23 7 10 7->10 7->17 22 7->22 8 9 8->9 8->18 21 8->21 9->7 9->15 9->22 10->8 10->16 10->21 11->5 11->14 11->23 12->6 12->13 12->24 13->1 13->7 13->15 14->2 14->8 14->16 15->6 15->14 16->5 16->13 17->10 17->22 18->9 18->21 19->6 19->11 19->24 20->5 20->12 20->23 21->3 21->17 22->4 22->18 23->2 23->12 23->19 24->1 24->11 24->20
Degree $24$
Order $3072$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2^5:(C_4\times S_4)$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 5391);
 

Group invariants

Abstract group:  $C_2^5:(C_4\times S_4)$
Copy content magma:IdentifyGroup(G);
 
Order:  $3072=2^{10} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $5391$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,14,2,13)(3,15)(4,16)(5,19,6,20)(7,17)(8,18)(9,22)(10,21)(11,23,12,24)$, $(1,18,9,15,6,23,2,17,10,16,5,24)(3,20,12,13,7,22,4,19,11,14,8,21)$, $(1,3)(2,4)(5,12,6,11)(7,10,8,9)(13,15,14,16)(17,22,18,21)(19,24,20,23)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_4$ x 4, $C_2^2$ x 7
$6$:  $S_3$
$8$:  $D_{4}$ x 4, $C_4\times C_2$ x 6, $C_2^3$
$12$:  $D_{6}$ x 3
$16$:  $D_4\times C_2$ x 2, $C_2^2:C_4$ x 4, $C_4\times C_2^2$
$24$:  $S_4$, $S_3 \times C_2^2$, $S_3 \times C_4$ x 2
$32$:  $C_2^3 : C_4 $ x 2, $C_2 \times (C_2^2:C_4)$
$48$:  $S_4\times C_2$ x 3, 12T28 x 2, 24T27
$64$:  16T76
$96$:  12T48, 12T53 x 2, 24T146
$192$:  $V_4^2:(S_3\times C_2)$, 12T86 x 2, 24T337, 24T397
$384$:  12T136, 24T1070
$768$:  12T186, 24T1595, 24T1599, 24T1719

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 3

Degree 3: $S_3$

Degree 4: $C_2^2$

Degree 6: $D_{6}$ x 3

Degree 8: None

Degree 12: $S_3 \times C_2^2$

Low degree siblings

24T5391 x 3, 24T5464 x 4, 24T6155 x 4, 24T6590 x 4, 32T205914 x 4, 32T206196 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

86 x 86 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed