Show commands: Magma
Group invariants
Abstract group: | $C_2^7:S_4$ |
| |
Order: | $3072=2^{10} \cdot 3$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $5384$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,9,2,10)(3,11,4,12)(5,16)(6,15)(7,13)(8,14)(17,20,18,19)(21,23,22,24)$, $(1,13,2,14)(3,15,4,16)(5,11,6,12)(7,10,8,9)(17,20)(18,19)(21,23)(22,24)$, $(1,24,2,23)(3,22,4,21)(5,19,6,20)(7,17,8,18)(9,11)(10,12)(13,16)(14,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $C_2^3$ $12$: $D_{6}$ x 3 $24$: $S_4$ x 3, $S_3 \times C_2^2$ $48$: $S_4\times C_2$ x 9 $96$: $V_4^2:S_3$, 12T48 x 3 $192$: 12T100 x 3 $384$: 12T139, 16T751 x 2 $768$: 16T1063, 32T34928 $1536$: 24T3330 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: None
Degree 8: None
Degree 12: $S_4$
Low degree siblings
24T5377 x 4, 24T5384 x 3, 24T5435 x 4, 24T5444 x 4, 24T5591 x 4, 24T5593 x 4, 24T5731 x 4, 24T5744 x 4, 24T6285 x 4, 24T6428 x 4, 24T6790 x 4, 24T6812 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
62 x 62 character table
Regular extensions
Data not computed