Show commands: Magma
Group invariants
| Abstract group: | $C_3:\SD_{16}$ |
| |
| Order: | $48=2^{4} \cdot 3$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | yes |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $24$ |
| |
| Transitive number $t$: | $42$ |
| |
| Parity: | $-1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $6$ |
| |
| Generators: | $(1,15,2,16)(3,13,4,14)(5,11,6,12)(7,10,8,9)(17,24,18,23)(19,21,20,22)$, $(1,18,9,2,17,10)(3,7,11,15,19,24)(4,8,12,16,20,23)(5,22,14)(6,21,13)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $8$: $D_{4}$ $12$: $D_{6}$ $16$: $QD_{16}$ $24$: $(C_6\times C_2):C_2$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $S_3$
Degree 8: $QD_{16}$
Degree 12: $(C_6\times C_2):C_2$
Low degree siblings
There are no siblings with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{12}$ | $1$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 6)( 7, 8)( 9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$ |
| 2B | $2^{9},1^{6}$ | $4$ | $2$ | $9$ | $( 3,16)( 4,15)( 5, 6)( 7,20)( 8,19)(11,23)(12,24)(13,14)(21,22)$ |
| 3A | $3^{8}$ | $2$ | $3$ | $16$ | $( 1,17, 9)( 2,18,10)( 3,19,11)( 4,20,12)( 5,22,14)( 6,21,13)( 7,24,15)( 8,23,16)$ |
| 4A | $4^{6}$ | $2$ | $4$ | $18$ | $( 1,13, 2,14)( 3,16, 4,15)( 5,17, 6,18)( 7,19, 8,20)( 9,21,10,22)(11,23,12,24)$ |
| 4B | $4^{6}$ | $12$ | $4$ | $18$ | $( 1, 3, 2, 4)( 5,23, 6,24)( 7,22, 8,21)( 9,19,10,20)(11,18,12,17)(13,15,14,16)$ |
| 6A | $6^{4}$ | $2$ | $6$ | $20$ | $( 1,18, 9, 2,17,10)( 3,20,11, 4,19,12)( 5,21,14, 6,22,13)( 7,23,15, 8,24,16)$ |
| 6B1 | $6^{3},3^{2}$ | $4$ | $6$ | $19$ | $( 1, 9,17)( 2,10,18)( 3,23,19,16,11, 8)( 4,24,20,15,12, 7)( 5,13,22, 6,14,21)$ |
| 6B-1 | $6^{3},3^{2}$ | $4$ | $6$ | $19$ | $( 1,17, 9)( 2,18,10)( 3, 8,11,16,19,23)( 4, 7,12,15,20,24)( 5,21,14, 6,22,13)$ |
| 8A1 | $8^{3}$ | $6$ | $8$ | $21$ | $( 1, 4,13,15, 2, 3,14,16)( 5,23,17,12, 6,24,18,11)( 7,10,19,22, 8, 9,20,21)$ |
| 8A-1 | $8^{3}$ | $6$ | $8$ | $21$ | $( 1, 3,13,16, 2, 4,14,15)( 5,24,17,11, 6,23,18,12)( 7, 9,19,21, 8,10,20,22)$ |
| 12A | $12^{2}$ | $4$ | $12$ | $22$ | $( 1,21,18,14, 9, 6, 2,22,17,13,10, 5)( 3,23,20,15,11, 8, 4,24,19,16,12, 7)$ |
Malle's constant $a(G)$: $1/9$
Character table
| 1A | 2A | 2B | 3A | 4A | 4B | 6A | 6B1 | 6B-1 | 8A1 | 8A-1 | 12A | ||
| Size | 1 | 1 | 4 | 2 | 2 | 12 | 2 | 4 | 4 | 6 | 6 | 4 | |
| 2 P | 1A | 1A | 1A | 3A | 2A | 2A | 3A | 3A | 3A | 4A | 4A | 6A | |
| 3 P | 1A | 2A | 2B | 1A | 4A | 4B | 2A | 2B | 2B | 8A1 | 8A-1 | 4A | |
| Type | |||||||||||||
| 48.16.1a | R | ||||||||||||
| 48.16.1b | R | ||||||||||||
| 48.16.1c | R | ||||||||||||
| 48.16.1d | R | ||||||||||||
| 48.16.2a | R | ||||||||||||
| 48.16.2b | R | ||||||||||||
| 48.16.2c | R | ||||||||||||
| 48.16.2d1 | C | ||||||||||||
| 48.16.2d2 | C | ||||||||||||
| 48.16.2e1 | C | ||||||||||||
| 48.16.2e2 | C | ||||||||||||
| 48.16.4a | S |
Regular extensions
Data not computed