Properties

Label 24T2864
24T2864 1 8 1->8 9 1->9 22 1->22 2 7 2->7 10 2->10 21 2->21 3 11 3->11 3->22 23 3->23 4 12 4->12 4->21 24 4->24 5 5->3 14 5->14 18 5->18 6 6->4 13 6->13 17 6->17 7->4 7->23 8->3 8->24 9->14 16 9->16 10->13 15 10->15 11->7 11->14 12->8 12->13 15->12 15->16 15->18 16->11 16->17 17->18 17->24 18->23 19 19->5 19->15 20 19->20 20->6 20->16 21->20 21->22 22->19 23->10 23->19 24->9 24->20
Degree $24$
Order $1296$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2\times C_3^4:D_4$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 2864);
 

Group invariants

Abstract group:  $C_2\times C_3^4:D_4$
Copy content magma:IdentifyGroup(G);
 
Order:  $1296=2^{4} \cdot 3^{4}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $2864$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $2$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,8)(2,7)(3,22,19,5)(4,21,20,6)(9,16,17,24)(10,15,18,23)(11,14)(12,13)$, $(1,22)(2,21)(3,23,19,15,12,8)(4,24,20,16,11,7)(5,18)(6,17)(9,14)(10,13)$, $(1,9)(2,10)(3,11)(4,12)(5,14)(6,13)(7,23)(8,24)(15,16)(17,18)(19,20)(21,22)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$8$:  $D_{4}$ x 2, $C_2^3$
$16$:  $D_4\times C_2$
$72$:  $C_3^2:D_4$ x 4
$144$:  12T77 x 4
$648$:  12T172

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$ x 7

Degree 3: None

Degree 4: $C_2^2$ x 7

Degree 6: None

Degree 8: $C_2^3$

Degree 12: 12T172

Low degree siblings

24T2862 x 6, 24T2864 x 5, 36T2116 x 4, 36T2119 x 4, 36T2121 x 6, 36T2129 x 24, 36T2130 x 24

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

54 x 54 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed