Show commands: Magma
Group invariants
Abstract group: | $C_2\times C_3^4:D_4$ |
| |
Order: | $1296=2^{4} \cdot 3^{4}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $2864$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,8)(2,7)(3,22,19,5)(4,21,20,6)(9,16,17,24)(10,15,18,23)(11,14)(12,13)$, $(1,22)(2,21)(3,23,19,15,12,8)(4,24,20,16,11,7)(5,18)(6,17)(9,14)(10,13)$, $(1,9)(2,10)(3,11)(4,12)(5,14)(6,13)(7,23)(8,24)(15,16)(17,18)(19,20)(21,22)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $16$: $D_4\times C_2$ $72$: $C_3^2:D_4$ x 4 $144$: 12T77 x 4 $648$: 12T172 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 7
Degree 3: None
Degree 4: $C_2^2$ x 7
Degree 6: None
Degree 8: $C_2^3$
Degree 12: 12T172
Low degree siblings
24T2862 x 6, 24T2864 x 5, 36T2116 x 4, 36T2119 x 4, 36T2121 x 6, 36T2129 x 24, 36T2130 x 24Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
54 x 54 character table
Regular extensions
Data not computed