Show commands: Magma
Group invariants
Abstract group: | $F_9:C_2$ |
| |
Order: | $144=2^{4} \cdot 3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $279$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $6$ |
| |
Generators: | $(1,9)(2,10)(3,20,11)(4,19,12)(5,15,14,24,22,8)(6,16,13,23,21,7)(17,18)$, $(1,5,3,23,17,21,19,8)(2,6,4,24,18,22,20,7)(9,13,12,15,10,14,11,16)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $16$: $QD_{16}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: $D_{4}$
Degree 6: None
Degree 8: $QD_{16}$
Degree 12: 12T84
Low degree siblings
9T19, 12T84, 18T68, 18T71, 18T73, 24T278, 24T280, 36T171, 36T172, 36T175Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{12}$ | $9$ | $2$ | $12$ | $( 1, 2)( 3,19)( 4,20)( 5,13)( 6,14)( 7, 8)( 9,18)(10,17)(11,12)(15,23)(16,24)(21,22)$ |
2B | $2^{9},1^{6}$ | $12$ | $2$ | $9$ | $( 1, 9)( 2,10)( 5,24)( 6,23)( 7,13)( 8,14)(15,22)(16,21)(17,18)$ |
3A | $3^{6},1^{6}$ | $8$ | $3$ | $12$ | $( 3,11,20)( 4,12,19)( 5,14,22)( 6,13,21)( 7,16,23)( 8,15,24)$ |
4A | $4^{6}$ | $18$ | $4$ | $18$ | $( 1,11, 2,12)( 3, 9,19,18)( 4,10,20,17)( 5,23,13,15)( 6,24,14,16)( 7,21, 8,22)$ |
4B | $4^{6}$ | $36$ | $4$ | $18$ | $( 1,15, 2,16)( 3,21,12,14)( 4,22,11,13)( 5,20, 6,19)( 7,10,24,17)( 8, 9,23,18)$ |
6A | $6^{2},3^{2},2^{3}$ | $24$ | $6$ | $17$ | $( 1, 9)( 2,10)( 3,20,11)( 4,19,12)( 5,15,14,24,22, 8)( 6,16,13,23,21, 7)(17,18)$ |
8A1 | $8^{3}$ | $18$ | $8$ | $21$ | $( 1,22,11, 7, 2,21,12, 8)( 3,16, 9, 6,19,24,18,14)( 4,15,10, 5,20,23,17,13)$ |
8A-1 | $8^{3}$ | $18$ | $8$ | $21$ | $( 1, 8,12,21, 2, 7,11,22)( 3,14,18,24,19, 6, 9,16)( 4,13,17,23,20, 5,10,15)$ |
Malle's constant $a(G)$: $1/9$
Character table
1A | 2A | 2B | 3A | 4A | 4B | 6A | 8A1 | 8A-1 | ||
Size | 1 | 9 | 12 | 8 | 18 | 36 | 24 | 18 | 18 | |
2 P | 1A | 1A | 1A | 3A | 2A | 2A | 3A | 4A | 4A | |
3 P | 1A | 2A | 2B | 1A | 4A | 4B | 2B | 8A1 | 8A-1 | |
Type | ||||||||||
144.182.1a | R | |||||||||
144.182.1b | R | |||||||||
144.182.1c | R | |||||||||
144.182.1d | R | |||||||||
144.182.2a | R | |||||||||
144.182.2b1 | C | |||||||||
144.182.2b2 | C | |||||||||
144.182.8a | R | |||||||||
144.182.8b | R |
Regular extensions
Data not computed