Properties

Label 24T279
24T279 1 5 1->5 9 1->9 2 6 2->6 10 2->10 3 20 3->20 23 3->23 4 19 4->19 24 4->24 5->3 15 5->15 6->4 16 6->16 7 7->2 7->6 8 8->1 8->5 13 9->13 14 10->14 11 11->3 11->16 12 12->4 12->15 13->12 13->23 14->11 14->24 15->10 15->14 16->9 16->13 17 18 17->18 21 17->21 22 18->22 19->8 19->12 20->7 20->11 21->7 21->19 22->8 22->20 23->17 23->21 24->18 24->22
Degree $24$
Order $144$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $F_9:C_2$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 279);
 

Group invariants

Abstract group:  $F_9:C_2$
Copy content magma:IdentifyGroup(G);
 
Order:  $144=2^{4} \cdot 3^{2}$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $279$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $-1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $6$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,9)(2,10)(3,20,11)(4,19,12)(5,15,14,24,22,8)(6,16,13,23,21,7)(17,18)$, $(1,5,3,23,17,21,19,8)(2,6,4,24,18,22,20,7)(9,13,12,15,10,14,11,16)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 3
$4$:  $C_2^2$
$8$:  $D_{4}$
$16$:  $QD_{16}$

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: None

Degree 4: $D_{4}$

Degree 6: None

Degree 8: $QD_{16}$

Degree 12: 12T84

Low degree siblings

9T19, 12T84, 18T68, 18T71, 18T73, 24T278, 24T280, 36T171, 36T172, 36T175

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

LabelCycle TypeSizeOrderIndexRepresentative
1A $1^{24}$ $1$ $1$ $0$ $()$
2A $2^{12}$ $9$ $2$ $12$ $( 1, 2)( 3,19)( 4,20)( 5,13)( 6,14)( 7, 8)( 9,18)(10,17)(11,12)(15,23)(16,24)(21,22)$
2B $2^{9},1^{6}$ $12$ $2$ $9$ $( 1, 9)( 2,10)( 5,24)( 6,23)( 7,13)( 8,14)(15,22)(16,21)(17,18)$
3A $3^{6},1^{6}$ $8$ $3$ $12$ $( 3,11,20)( 4,12,19)( 5,14,22)( 6,13,21)( 7,16,23)( 8,15,24)$
4A $4^{6}$ $18$ $4$ $18$ $( 1,11, 2,12)( 3, 9,19,18)( 4,10,20,17)( 5,23,13,15)( 6,24,14,16)( 7,21, 8,22)$
4B $4^{6}$ $36$ $4$ $18$ $( 1,15, 2,16)( 3,21,12,14)( 4,22,11,13)( 5,20, 6,19)( 7,10,24,17)( 8, 9,23,18)$
6A $6^{2},3^{2},2^{3}$ $24$ $6$ $17$ $( 1, 9)( 2,10)( 3,20,11)( 4,19,12)( 5,15,14,24,22, 8)( 6,16,13,23,21, 7)(17,18)$
8A1 $8^{3}$ $18$ $8$ $21$ $( 1,22,11, 7, 2,21,12, 8)( 3,16, 9, 6,19,24,18,14)( 4,15,10, 5,20,23,17,13)$
8A-1 $8^{3}$ $18$ $8$ $21$ $( 1, 8,12,21, 2, 7,11,22)( 3,14,18,24,19, 6, 9,16)( 4,13,17,23,20, 5,10,15)$

Malle's constant $a(G)$:     $1/9$

Copy content magma:ConjugacyClasses(G);
 

Character table

1A 2A 2B 3A 4A 4B 6A 8A1 8A-1
Size 1 9 12 8 18 36 24 18 18
2 P 1A 1A 1A 3A 2A 2A 3A 4A 4A
3 P 1A 2A 2B 1A 4A 4B 2B 8A1 8A-1
Type
144.182.1a R 1 1 1 1 1 1 1 1 1
144.182.1b R 1 1 1 1 1 1 1 1 1
144.182.1c R 1 1 1 1 1 1 1 1 1
144.182.1d R 1 1 1 1 1 1 1 1 1
144.182.2a R 2 2 0 2 2 0 0 0 0
144.182.2b1 C 2 2 0 2 0 0 0 ζ8ζ83 ζ8+ζ83
144.182.2b2 C 2 2 0 2 0 0 0 ζ8+ζ83 ζ8ζ83
144.182.8a R 8 0 2 1 0 0 1 0 0
144.182.8b R 8 0 2 1 0 0 1 0 0

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed