Show commands: Magma
Group invariants
Abstract group: | $F_9:C_2$ |
| |
Order: | $144=2^{4} \cdot 3^{2}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $278$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,18)(2,17)(3,4)(5,8)(6,7)(9,10)(11,12)(13,16)(14,15)(19,20)(21,23)(22,24)$, $(1,13,12,24,10,6,19,8)(2,14,11,23,9,5,20,7)(3,16,18,22)(4,15,17,21)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $8$: $D_{4}$ $16$: $QD_{16}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 3: None
Degree 4: $C_2^2$, $D_{4}$ x 2
Degree 6: None
Degree 8: $D_4$
Degree 12: 12T84
Low degree siblings
9T19, 12T84, 18T68, 18T71, 18T73, 24T279, 24T280, 36T171, 36T172, 36T175Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{24}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{8},1^{8}$ | $9$ | $2$ | $8$ | $( 1,10)( 2, 9)( 3,11)( 4,12)( 5,22)( 6,21)(15,24)(16,23)$ |
2B | $2^{12}$ | $12$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 5, 8)( 6, 7)( 9,10)(11,19)(12,20)(13,23)(14,24)(15,22)(16,21)(17,18)$ |
3A | $3^{6},1^{6}$ | $8$ | $3$ | $12$ | $( 1,10,17)( 2, 9,18)( 5,22,14)( 6,21,13)( 7,16,23)( 8,15,24)$ |
4A | $4^{4},2^{4}$ | $18$ | $4$ | $16$ | $( 1, 4,10,12)( 2, 3, 9,11)( 5,16,22,23)( 6,15,21,24)( 7,14)( 8,13)(17,19)(18,20)$ |
4B | $4^{4},2^{4}$ | $36$ | $4$ | $16$ | $( 1,16)( 2,15)( 3,13,11,21)( 4,14,12,22)( 5,19)( 6,20)( 7,17,23,10)( 8,18,24, 9)$ |
6A | $6^{3},2^{3}$ | $24$ | $6$ | $18$ | $( 1,18,10, 2,17, 9)( 3, 4)( 5,24,22, 8,14,15)( 6,23,21, 7,13,16)(11,19)(12,20)$ |
8A1 | $8^{2},4^{2}$ | $18$ | $8$ | $20$ | $( 1,21, 4,24,10, 6,12,15)( 2,22, 3,23, 9, 5,11,16)( 7,18,14,20)( 8,17,13,19)$ |
8A-1 | $8^{2},4^{2}$ | $18$ | $8$ | $20$ | $( 1,15,12, 6,10,24, 4,21)( 2,16,11, 5, 9,23, 3,22)( 7,20,14,18)( 8,19,13,17)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 3A | 4A | 4B | 6A | 8A1 | 8A-1 | ||
Size | 1 | 9 | 12 | 8 | 18 | 36 | 24 | 18 | 18 | |
2 P | 1A | 1A | 1A | 3A | 2A | 2A | 3A | 4A | 4A | |
3 P | 1A | 2A | 2B | 1A | 4A | 4B | 2B | 8A1 | 8A-1 | |
Type | ||||||||||
144.182.1a | R | |||||||||
144.182.1b | R | |||||||||
144.182.1c | R | |||||||||
144.182.1d | R | |||||||||
144.182.2a | R | |||||||||
144.182.2b1 | C | |||||||||
144.182.2b2 | C | |||||||||
144.182.8a | R | |||||||||
144.182.8b | R |
Regular extensions
Data not computed