Properties

Label 24T2525
24T2525 1 2 1->2 22 1->22 21 2->21 3 4 3->4 5 3->5 17 3->17 6 4->6 18 4->18 5->1 5->6 15 5->15 6->2 16 6->16 7 7->4 8 7->8 20 7->20 8->3 19 8->19 9 10 9->10 11 9->11 9->11 12 10->12 10->12 11->7 11->12 11->21 12->8 12->22 13 13->10 14 13->14 14->9 15->5 15->16 15->17 16->6 16->18 17->3 17->13 17->18 18->4 18->14 19->15 19->20 20->16 21->22 23 21->23 21->23 24 22->24 22->24 23->9 23->20 23->24 24->10 24->19
Degree $24$
Order $768$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2^3:\GL(2,\mathbb{Z}/4)$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 2525);
 

Group invariants

Abstract group:  $C_2^3:\GL(2,\mathbb{Z}/4)$
Copy content magma:IdentifyGroup(G);
 
Order:  $768=2^{8} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $2525$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $4$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(3,5,15,17)(4,6,16,18)(7,20)(8,19)(9,11,21,23)(10,12,22,24)$, $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$, $(1,22,24,19,15,5)(2,21,23,20,16,6)(3,17,13,10,12,8)(4,18,14,9,11,7)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$4$:  $C_2^2$ x 7
$6$:  $S_3$
$8$:  $D_{4}$ x 2, $C_2^3$
$12$:  $D_{6}$ x 3
$16$:  $D_4\times C_2$
$24$:  $S_4$ x 3, $S_3 \times C_2^2$, $(C_6\times C_2):C_2$ x 2
$48$:  $S_4\times C_2$ x 9, 24T25
$96$:  $V_4^2:S_3$, 12T48 x 3, 12T49 x 6
$192$:  12T100 x 3, 24T398 x 3
$384$:  12T135 x 2, 12T139

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $S_3$

Degree 4: None

Degree 6: $D_{6}$, $S_4\times C_2$ x 2

Degree 8: None

Degree 12: 12T48, 12T148 x 2

Low degree siblings

24T1932 x 12, 24T1974 x 12, 24T2204 x 24, 24T2469 x 24, 24T2470 x 48, 24T2471 x 8, 24T2472 x 12, 24T2475 x 4, 24T2476 x 8, 24T2498 x 48, 24T2525 x 23, 32T34970 x 4

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

56 x 56 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed