Properties

Label 24T2505
24T2505 1 2 1->2 4 1->4 8 1->8 3 2->3 7 2->7 3->4 10 3->10 18 3->18 9 4->9 17 4->17 5 6 5->6 5->8 6->7 7->8 13 7->13 21 7->21 14 8->14 22 8->22 9->10 12 9->12 16 9->16 11 10->11 15 10->15 11->2 11->12 24 11->24 12->1 23 12->23 13->14 13->15 19 13->19 14->16 20 14->20 15->6 15->16 15->21 16->5 16->22 17->18 17->20 18->19 19->2 19->10 19->20 20->1 20->9 21->3 21->22 21->24 22->4 22->23 23->14 23->24 24->13
Degree $24$
Order $768$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2^7:C_6$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 2505);
 

Group invariants

Abstract group:  $C_2^7:C_6$
Copy content magma:IdentifyGroup(G);
 
Order:  $768=2^{8} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $2505$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $4$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,8,14,20)(2,7,13,19)(3,10,15,21)(4,9,16,22)(11,24)(12,23)$, $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$, $(1,4,17,20,9,12)(2,3,18,19,10,11)(5,8,22,23,14,16)(6,7,21,24,13,15)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$3$:  $C_3$
$4$:  $C_2^2$ x 7
$6$:  $C_6$ x 7
$8$:  $D_{4}$ x 2, $C_2^3$
$12$:  $A_4$, $C_6\times C_2$ x 7
$16$:  $D_4\times C_2$
$24$:  $A_4\times C_2$ x 7, $D_4 \times C_3$ x 2, 24T3
$48$:  $C_2^2 \times A_4$ x 7, 24T38
$96$:  $C_2^4:C_6$, 12T51 x 2, 24T135
$192$:  12T87 x 3, 24T411
$384$:  12T134 x 2, 24T1078

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $C_3$

Degree 4: None

Degree 6: $C_6$, $A_4\times C_2$ x 2

Degree 8: None

Degree 12: $C_2^2 \times A_4$, 12T142 x 2

Low degree siblings

24T2447 x 32, 24T2448 x 16, 24T2451 x 16, 24T2453 x 16, 24T2454 x 8, 24T2457 x 32, 24T2458 x 16, 24T2461 x 8, 24T2462 x 16, 24T2504 x 16, 24T2505 x 15, 32T34747 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

56 x 56 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed