Show commands: Magma
Group invariants
Abstract group: | $C_2^7:C_6$ |
| |
Order: | $768=2^{8} \cdot 3$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $2505$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,8,14,20)(2,7,13,19)(3,10,15,21)(4,9,16,22)(11,24)(12,23)$, $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$, $(1,4,17,20,9,12)(2,3,18,19,10,11)(5,8,22,23,14,16)(6,7,21,24,13,15)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $3$: $C_3$ $4$: $C_2^2$ x 7 $6$: $C_6$ x 7 $8$: $D_{4}$ x 2, $C_2^3$ $12$: $A_4$, $C_6\times C_2$ x 7 $16$: $D_4\times C_2$ $24$: $A_4\times C_2$ x 7, $D_4 \times C_3$ x 2, 24T3 $48$: $C_2^2 \times A_4$ x 7, 24T38 $96$: $C_2^4:C_6$, 12T51 x 2, 24T135 $192$: 12T87 x 3, 24T411 $384$: 12T134 x 2, 24T1078 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $C_3$
Degree 4: None
Degree 6: $C_6$, $A_4\times C_2$ x 2
Degree 8: None
Degree 12: $C_2^2 \times A_4$, 12T142 x 2
Low degree siblings
24T2447 x 32, 24T2448 x 16, 24T2451 x 16, 24T2453 x 16, 24T2454 x 8, 24T2457 x 32, 24T2458 x 16, 24T2461 x 8, 24T2462 x 16, 24T2504 x 16, 24T2505 x 15, 32T34747 x 8Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
56 x 56 character table
Regular extensions
Data not computed