Show commands: Magma
Group invariants
Abstract group: | $C_2^3:\GL(2,\mathbb{Z}/4)$ |
| |
Order: | $768=2^{8} \cdot 3$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $24$ |
| |
Transitive number $t$: | $2476$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,23)(2,24)(3,4)(5,6)(7,10)(8,9)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)$, $(1,21)(2,22)(3,16)(4,15)(5,18)(6,17)(7,12)(8,11)(9,13)(10,14)(19,23)(20,24)$, $(1,9,17)(2,10,18)(3,12,19,6,14,21)(4,11,20,5,13,22)(7,15,24)(8,16,23)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 7 $4$: $C_2^2$ x 7 $6$: $S_3$ $8$: $D_{4}$ x 2, $C_2^3$ $12$: $D_{6}$ x 3 $16$: $D_4\times C_2$ $24$: $S_4$ x 3, $S_3 \times C_2^2$, $(C_6\times C_2):C_2$ x 2 $48$: $S_4\times C_2$ x 9, 24T25 $96$: $V_4^2:S_3$, 12T48 x 3, 12T49 x 6 $192$: 12T100 x 3, 24T398 x 3 $384$: 12T135 x 2, 12T139 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 4: $D_{4}$
Degree 6: $S_3$
Degree 8: None
Degree 12: $(C_6\times C_2):C_2$, 12T106, 12T135
Low degree siblings
24T1932 x 12, 24T1974 x 12, 24T2204 x 24, 24T2469 x 24, 24T2470 x 48, 24T2471 x 8, 24T2472 x 12, 24T2475 x 4, 24T2476 x 7, 24T2498 x 48, 24T2525 x 24, 32T34970 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
56 x 56 character table
Regular extensions
Data not computed