Properties

Label 24T2458
24T2458 1 2 1->2 7 1->7 12 1->12 8 2->8 11 2->11 3 4 3->4 3->11 15 3->15 4->12 16 4->16 5 6 5->6 14 5->14 18 5->18 13 6->13 17 6->17 7->8 7->18 20 7->20 8->17 19 8->19 9 10 9->10 9->15 22 9->22 10->16 21 10->21 11->12 11->20 12->19 13->14 13->21 24 13->24 14->22 23 14->23 15->2 15->6 15->16 16->1 16->5 17->3 17->18 17->24 18->4 18->23 19->4 19->9 19->20 20->3 20->10 21->6 21->7 21->22 22->5 22->8 23->10 23->24 24->9
Degree $24$
Order $768$
Cyclic no
Abelian no
Solvable yes
Primitive no
$p$-group no
Group: $C_2^7:C_6$

Related objects

Downloads

Learn more

Show commands: Magma

Copy content magma:G := TransitiveGroup(24, 2458);
 

Group invariants

Abstract group:  $C_2^7:C_6$
Copy content magma:IdentifyGroup(G);
 
Order:  $768=2^{8} \cdot 3$
Copy content magma:Order(G);
 
Cyclic:  no
Copy content magma:IsCyclic(G);
 
Abelian:  no
Copy content magma:IsAbelian(G);
 
Solvable:  yes
Copy content magma:IsSolvable(G);
 
Nilpotency class:   not nilpotent
Copy content magma:NilpotencyClass(G);
 

Group action invariants

Degree $n$:  $24$
Copy content magma:t, n := TransitiveGroupIdentification(G); n;
 
Transitive number $t$:  $2458$
Copy content magma:t, n := TransitiveGroupIdentification(G); t;
 
Parity:  $1$
Copy content magma:IsEven(G);
 
Primitive:  no
Copy content magma:IsPrimitive(G);
 
$\card{\Aut(F/K)}$:  $4$
Copy content magma:Order(Centralizer(SymmetricGroup(n), G));
 
Generators:  $(1,7,18,23,10,16)(2,8,17,24,9,15)(3,11,20)(4,12,19)(5,14,22)(6,13,21)$, $(1,12)(2,11)(3,15,6,17)(4,16,5,18)(7,20,10,21)(8,19,9,22)(13,24)(14,23)$, $(1,2)(3,4)(5,6)(7,8)(9,10)(11,12)(13,14)(15,16)(17,18)(19,20)(21,22)(23,24)$
Copy content magma:Generators(G);
 

Low degree resolvents

$\card{(G/N)}$Galois groups for stem field(s)
$2$:  $C_2$ x 7
$3$:  $C_3$
$4$:  $C_2^2$ x 7
$6$:  $C_6$ x 7
$8$:  $D_{4}$ x 2, $C_2^3$
$12$:  $A_4$, $C_6\times C_2$ x 7
$16$:  $D_4\times C_2$
$24$:  $A_4\times C_2$ x 7, $D_4 \times C_3$ x 2, 24T3
$48$:  $C_2^2 \times A_4$ x 7, 24T38
$96$:  $C_2^4:C_6$, 12T51 x 2, 24T135
$192$:  12T87 x 3, 24T411
$384$:  12T134 x 2, 24T1078

Resolvents shown for degrees $\leq 47$

Subfields

Degree 2: $C_2$

Degree 3: $C_3$

Degree 4: None

Degree 6: $C_6$, $A_4\times C_2$ x 2

Degree 8: None

Degree 12: $C_2^2 \times A_4$, 12T134 x 2

Low degree siblings

24T2447 x 32, 24T2448 x 16, 24T2451 x 16, 24T2453 x 16, 24T2454 x 8, 24T2457 x 32, 24T2458 x 15, 24T2461 x 8, 24T2462 x 16, 24T2504 x 16, 24T2505 x 16, 32T34747 x 8

Siblings are shown with degree $\leq 47$

A number field with this Galois group has no arithmetically equivalent fields.

Conjugacy classes

Conjugacy classes not computed

Copy content magma:ConjugacyClasses(G);
 

Character table

56 x 56 character table

Copy content magma:CharacterTable(G);
 

Regular extensions

Data not computed